Advertisement

Archive for Rational Mechanics and Analysis

, Volume 204, Issue 3, pp 917–944 | Cite as

Non-Contraction of Heat Flow on Minkowski Spaces

  • Shin-ichi Ohta
  • Karl-Theodor Sturm
Article

Abstract

We study contractivity properties of gradient flows for functions on normed spaces or, more generally, on Finsler manifolds. Contractivity of the flows turns out to be equivalent to a new notion of convexity for the functions. This is different from the usual convexity along geodesics in non-Riemannian Finsler manifolds. As an application, we show that the heat flow on Minkowski normed spaces other than inner product spaces is not contractive with respect to the quadratic Wasserstein distance.

Keywords

Riemannian Manifold Minkowski Space Relative Entropy Variation Formula Finsler Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio L., Gigli N., Savaré G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser Verlag, Basel (2008)zbMATHGoogle Scholar
  2. 2.
    Aronson D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bao D., Chern S.-S., Shen Z.: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Erbar M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46, 1–23 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Gigli N.: On the heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Partial Differ. Equ. 39, 101–120 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gigli, N., Ohta, S.: First variation formula in Wasserstein spaces over compact Alexandrov spaces. Can. Math. Bull. (2011). doi: 10.4153/CMB-2011-110-3
  7. 7.
    Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lytchak A.: Open map theorem for metric spaces. St. Petersburg Math. J. 17, 477–491 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    McCann R. J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moser J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)CrossRefzbMATHGoogle Scholar
  11. 11.
    Nash J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ohta S.: Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Am. J. Math. 131, 475–516 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ohta S.: Uniform convexity and smoothness, and their applications in Finsler geometry. Math. Ann. 343, 669–699 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ohta S.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ohta S., Sturm K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62, 1386–1433 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ohta, S., Sturm, K.-T.: Bochner-Weitzenböck formula and Li-Yau estimates on Finsler manifolds. Preprint (2011). arXiv:1104.5276Google Scholar
  17. 17.
    Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    von Renesse M.-K., Sturm K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Savaré G.: Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345, 151–154 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shen Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Villani C.: Optimal Transport, Old and New. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations