Advertisement

Archive for Rational Mechanics and Analysis

, Volume 204, Issue 2, pp 479–513 | Cite as

Harmonic Maps and Ideal Fluid Flows

  • A. Aleman
  • A. ConstantinEmail author
Article

Abstract

Using harmonic maps we provide an approach towards obtaining explicit solutions to the incompressible two-dimensional Euler equations. More precisely, the problem of finding all solutions which in Lagrangian variables (describing the particle paths of the flow) present a labelling by harmonic functions is reduced to solving an explicit nonlinear differential system in \({\mathbb {C^n}}\) with n = 3 or n = 4. While the general solution is not available in explicit form, structural properties of the system permit us to identify several families of explicit solutions.

Keywords

Vorticity Euler Equation Explicit Solution Water Wave Connected Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrashkin, A.A., Yakubovich E.I.: Two-dimensional vortex flows of an ideal fluid. Dokl. Akad. Nauk SSSR 276, 76–78 (1984) [in Russian; English translation: Soviet Phys. Dokl. 29, 370–371 (1984)]Google Scholar
  2. 2.
    Abrashkin A.A., Yakubovich E.I.: Nonstationary vortex flows of an ideal incompressible fluid. J. Appl. Mech. Tech. Phys. 2, 57–64 (1985)Google Scholar
  3. 3.
    Aref H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345–389 (1983)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Bennett A.F.: Lagrangian Fluid Mechanics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  5. 5.
    Burckel R.B.: An Introduction to Classical Complex Analysis. Academic Press, New York (1979)CrossRefGoogle Scholar
  6. 6.
    Chicone C.: Ordinary Differential Equations with Applications. Springer, New York (1999)zbMATHGoogle Scholar
  7. 7.
    Clunie J., Sheil-Small T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. 9, 3–25 (1984)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Constantin A., Strauss W.: Trochoidal solutions to the incompressible two-dimensional Euler equations. J. Math. Fluid Mech. 12, 181–201 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Constantin A., Strauss W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63, 533–557 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Duren P.: Univalent Functions. Springer, New York (1983)zbMATHGoogle Scholar
  15. 15.
    Duren P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Flierl G.R.: Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 19, 493–530 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Gerstner, F.: Theorie der Wellen. Abh. Königl. Böhm. Ges. Wiss. (1802)Google Scholar
  18. 18.
    Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)CrossRefGoogle Scholar
  19. 19.
    Guyon E., Hulin J.-P., Petit L., Mitescu C.D.: Physical Hydrodynamics. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  20. 20.
    Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kirchhoff G.: Vorlesungen über matematische Physik. Mechanik Teubner, Leipzig (1876)Google Scholar
  23. 23.
    Lewy H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ma, W.-Z., Shekhtman, B.: Do the chain rules for matrix functions hold without commutativity? Linear Multilinear Algebra 58, 439–447 (2010)Google Scholar
  25. 25.
    Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  26. 26.
    Martin J.F.P.: On the exponential representation of solutions of linear differential equations. J. Differ. Equ. 4, 257–279 (1968)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Mocanu P.T.: Sufficient conditions of univalency for complex functions in the class C 1. Anal. Numér. Théor. Approx. 10, 75–79 (1981)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mitchell T.B., Rossi L.F.: The evolution of Kirchhoff elliptic vortices. Phys. Fluids 20, 054103 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Rankine W.J.M.: On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. Lond. Ser. A 153, 127–138 (1863)ADSCrossRefGoogle Scholar
  30. 30.
    Strauss W.: Steady water waves. Bull. Am. Math. Soc. 47, 671–694 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Matematik NFLund UniversityLundSweden
  2. 2.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations