Archive for Rational Mechanics and Analysis

, Volume 204, Issue 1, pp 273–284 | Cite as

Global Surfaces of Section in the Planar Restricted 3-Body Problem

  • Peter Albers
  • Joel W. Fish
  • Urs Frauenfelder
  • Helmut Hofer
  • Otto van Koert
Article

Abstract

The restricted planar three-body problem has a rich history, yet many unanswered questions still remain. In the present paper we prove the existence of a global surface of section near the smaller body in a new range of energies and mass ratios for which the Hill’s region still has three connected components. The approach relies on recent global methods in symplectic geometry and contrasts sharply with the perturbative methods used until now.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, P., Frauenfelder, U., van Koert, O., Paternain, G.: The contact geometry of the restricted 3-body problem. Commun. Pure Appl. Math. arXiv:1010.2140 (2010). http://dx.doi.org/10.1002/cpa.21380 Google Scholar
  2. Bramham, B., Hofer, H.: First Steps Towards a Symplectic Dynamics. arXiv:1102.3723 (2011)Google Scholar
  3. Birkhoff G.D.: Proof of Poincaré’s geometric theorem. Trans. Am. Math. Soc. 14(1), 14–22 (1913)MathSciNetMATHGoogle Scholar
  4. Birkhoff G.D.: Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc. 18(2), 199–300 (1917)MathSciNetMATHCrossRefGoogle Scholar
  5. Bramham, B.: A dynamical application of finite energy foliations to area preserving disc maps. Preprint, 2011Google Scholar
  6. Bramham, B.: Finite energy foliations with pre-selected orbits I. In preparation, 2011Google Scholar
  7. Bramham, B.: Finite energy foliations with pre-selected orbits II. In preparation, 2011Google Scholar
  8. Conley C.C.: On some new long periodic solutions of the plane restricted three body problem. Commun. Pure Appl. Math. 16, 449–467 (1963)MathSciNetMATHCrossRefGoogle Scholar
  9. Conley C.C.: The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow. SIAM J. Appl. Math. 16, 620–625 (1968)MathSciNetMATHCrossRefGoogle Scholar
  10. Conley, C.C.: Twist mappings, linking, analyticity, and periodic solutions which pass close to an unstable periodic solution. Topological Dynamics (Sympos., Colorado State Univ., Ft. Collins, Colo., 1967), Benjamin, New York, 129–153, 1968Google Scholar
  11. Franks J., Handel M.: Periodic points of Hamiltonian surface diffeomorphisms. Geom. Topol. 7, 713–756 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. Franks J.: Geodesics on S 2 and periodic points of annulus homeomorphisms. Invent. Math. 108(2), 403–418 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  13. Göing-Jaeschke, A.: Parameter estimation and Bessel processes in financial models and numerical analysis in Hamiltonian dynamics. Ph.D.-thesis, Swiss Federal Inst. of Techn. Zurich, Diss. ETH No. 12566, 1998Google Scholar
  14. Hryniewicz, U., Salomão, P.: On the existence of disk-like global sections for Reeb flows on the tight 3-sphere. arXiv:1006.0049, 2010Google Scholar
  15. Hofer H., Wysocki K., Zehnder E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. (2) 148(1), 197–289 (1998)MathSciNetMATHCrossRefGoogle Scholar
  16. Hofer H., Wysocki K., Zehnder E.: Finite energy foliations of tight three-spheres and Hamiltonian dynamics. Ann. Math. (2) 157(1), 125–255 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1994Google Scholar
  18. Kummer M.: On the stability of Hill’s solutions of the plane restricted three body problem. Am. J. Math. 101(6), 1333–1354 (1979)MathSciNetMATHCrossRefGoogle Scholar
  19. Levi-Civita T.: Sur la régularisation du problème des trois corps. Acta Math. 42(1), 99–144 (1920)MathSciNetCrossRefGoogle Scholar
  20. Le Calvez P.: Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J. 133(1), 125–184 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. McGehee, R.P.: Some homoclinic orbits for the restricted three-body problem. Ph.D. thesis, The University of Wisconsin-Madison, 1969Google Scholar
  22. Poincaré H.: Sur un théorème de géométrie. Rend. Circ. Mat. Palermo 33(1), 375–407 (1912)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Peter Albers
    • 1
  • Joel W. Fish
    • 2
  • Urs Frauenfelder
    • 4
  • Helmut Hofer
    • 3
  • Otto van Koert
    • 4
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA
  3. 3.Institute for Advanced StudyPrincetonUSA
  4. 4.Department of Mathematics and Research Institute of MathematicsSeoul National UniversitySeoulKorea

Personalised recommendations