Archive for Rational Mechanics and Analysis

, Volume 202, Issue 1, pp 295–348 | Cite as

Quasistatic Evolution of Sessile Drops and Contact Angle Hysteresis

  • Giovanni AlbertiEmail author
  • Antonio DeSimone


We consider the classical model of capillarity coupled with a rate-independent dissipation mechanism due to frictional forces acting on the contact line, and prove the existence of solutions with prescribed initial configuration for the corresponding quasistatic evolution.We also discuss in detail some explicit solutions to show that the model does account for contact angle hysteresis, and to compare its predictions with experimental observations.


Dissipation Rate Contact Line Sessile Drop Volume Constraint Discretized Solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti, G.: Variational models for phase transitions. An approach via Γ-convergence. In: Differential Equations and Calculus of Variations. Topics on Geometrical Evolution Problems and Degree Theory (Pisa 1996) (Eds. Buttazzo G. et al.) Springer-Verlag, Berlin, 95–114, 2000Google Scholar
  2. 2.
    Alberti G., Bouchitté G., Seppecher P.: Phase transition with the line-tension effect. Arch. Rational. Mech. Anal. 144, 1–46 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alberti G., DeSimone A.: Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 79–97 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford Science Publications, Oxford (1999)zbMATHGoogle Scholar
  5. 5.
    Braides A.: Γ-convergence for Beginners. Oxford Lecture Series in Mathematics and its Applications, Vol. 22. Oxford University Press, Oxford (2002)Google Scholar
  6. 6.
    Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Translated from the Russian by A.B. Sosinskiĭ. Grundlehren der Mathematischen Wissenschaften. Springer Series in Soviet Mathematics, Vol. 285. Springer, Berlin, 1988Google Scholar
  7. 7.
    Caffarelli L., Mellet A.: Capillary Drops: contact angle hysteresis and sticking drops. Calc. Var. Partial Differ. Equ. 29, 141–160 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Callies M., Quéré D.: On water repellency. Soft Matter 1, 55–61 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Dal Maso, G.: An Introduction to Γ-convergence. Progress in Nonlinear Diff. Equat. and their Appl., Vol. 8. Birkhäuser, Boston, 1993Google Scholar
  10. 10.
    Dal Maso G., DeSimone A., Mora M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180, 237–291 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dal Maso G., DeSimone A., Mora M.G., Morini M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189, 469–544 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dal Maso G., DeSimone A.: Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19, 1643–1711 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dal Maso G., Toader R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de Gennes P.-G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    de Gennes, P.-G., Brochard-Wyart, F., Quéré, D.: Gouttes, Bulles, Perles et Ondes. Collection Échelles. Editions Belin, Paris, 2005Google Scholar
  16. 16.
    DeSimone, A., Fedeli, L., Turco A.: A phase field approach to wetting and contact angle hysteresis phenomena. In: IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (Bochum 2008). (Ed. Hackl K.) IUTAM Bookseries, Vol. 21. Springer, New York, 51–63, 2010Google Scholar
  17. 17.
    DeSimone A., Grunewald N., Otto F.: A new model of contact angle hysteresis. Netw. Heterog. Media 2, 211–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  19. 19.
    Finn R.: Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften, Vol. 284. Springer, New York (1986)Google Scholar
  20. 20.
    Francfort G., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gauss, C.F.: Principia Generalia Theoriae Figurae Fluidorum in Statu Aequilibrii. Comment. Soc. Regiae Scient. Gottingensis Rec. 7 (1830). Reprinted in Werke. Vol. V, pp. 29–77. Königliche Gesellschaft der Wissenschaften, Göttingen, 1877Google Scholar
  22. 22.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, Vol. 80. Birkhäuser, Boston, 1984Google Scholar
  23. 23.
    Laplace, P.-S.: Traité de Mécanique Céleste; Suppléments au Livre X. Paris, 1805–1806. Reprinted in Œuvres Complètes. Vol. IV. Gauthier-Villar, Paris, 1878–1912Google Scholar
  24. 24.
    Luckhaus S., Modica L.: The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107, 71–83 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mainik A., Mielke A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22, 73–99 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Massari U.: Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in \({\mathbb{R}^n}\) . Arch. Ration. Mech. Anal. 55, 357–382 (1974)CrossRefzbMATHGoogle Scholar
  27. 27.
    Mielke, A.: Evolution of rate-independent systems. In: Handbook of Differential Equations. Evolutionary equations. Vol. II. (Eds. Dafermos C.M. and Feireisl E.) Elsevier/North-Holland, Amsterdam, 461–559, 2005Google Scholar
  28. 28.
    Mielke A.: Modeling and Analysis of Rate-independent Processes. Lipschitz Lectures. University of Bonn, Bonn (2007)Google Scholar
  29. 29.
    Mielke, A.: Differential, energetic, and metric formulations for rate independent processes. In: Nonlinear PDEs and Applications. Lectures from the C.I.M.E. Summer School held in Cetraro, June 23–28, 2008 (Eds. Ambrosio L. and Savaré G.). Lectures Notes in Mathematics, Vol. 1813. Springer Verlag, Berlin. In printGoogle Scholar
  30. 30.
    Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. In print (published online January 2011)Google Scholar
  31. 31.
    Patankar N.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249–1253 (2003)CrossRefGoogle Scholar
  32. 32.
    Quéré D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Reshetnyak, Yu.G. : Weak convergence of completely additive vector functions on a set (Russian). Sibirsk. Mat. Zh. 9, 1386–1394 (1968); translation in Siberian Math. J. 9, 1039–1045 (1968)Google Scholar
  34. 34.
    Srivastava S.M.: A Course on Borel Sets. Graduate Texts in Mathematics, Vol. 180. Springer, New York (1998)CrossRefGoogle Scholar
  35. 35.
    Tamanini, I.: Regularity Results for Almost Minimal Oriented Hypersurfaces in \({\mathbb{R}^n}\) . Quaderni del Dipartimento di Matematica, 1. Università di Lecce, Lecce, 1984Google Scholar
  36. 36.
    Turco A., Alouges F., DeSimone A.: Wetting on rough surfaces and contact angle hysteresis, numerical experiments based on a phase field model. M2AN Math. Model. Numer. Anal. 43, 1027–1044 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly
  2. 2.SISSA, International School for Advanced StudiesTriesteItaly

Personalised recommendations