Advertisement

Archive for Rational Mechanics and Analysis

, Volume 201, Issue 3, pp 841–870 | Cite as

A Global Foliation of Einstein–Euler Spacetimes with Gowdy-Symmetry on T3

  • Philippe G. LeFlochEmail author
  • Alan D. Rendall
Article

Abstract

We investigate the initial value problem for the Einstein–Euler equations of general relativity under the assumption of Gowdy symmetry on T3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein–Euler equations.

Keywords

Weak Solution Euler Equation Einstein Equation Entropy Inequality Constant Mean Curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréasson H.: Global foliations of matter spacetimes with Gowdy symmetry. Commun. Math. Phys. 206, 337–366 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andréasson H., Rendall A.D., Weaver M.: Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter. Commun. Partial Differ. Equ. 29, 237–262 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnes A.P., LeFloch P.G., Schmidt B.G., Stewart J.M.: The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes. Class. Quantum Grav. 21, 5043–5074 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berger B.K., Chruściel P.T., Isenberg J., Moncrief V.: Global foliations of vacuum spacetimes with T 2 isometry. Ann. Phys. 260, 117–148 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berger B.K., Chruściel P.T., Moncrief V.: On asymptotically flat spacetimes with G 2-invariant Cauchy surfaces. Ann. Phys. 237, 322–354 (1995)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Christodoulou D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chruściel P.T.: On spacetimes with U(1)×U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202, 100–150 (1990)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Chruściel P.T., Isenberg J., Moncrief V.: Strong cosmic censorship in polarized Gowdy spacetimes. Class. Quantum Grav. 7, 1671–1680 (1990)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Dafermos C.M. (2010) Hyperbolic Conservation Laws in Continuum Physics. Grundlehren Math. Wissenschaften Series 325, 3rd edn. Springer, New YorkGoogle Scholar
  10. 10.
    Dafermos M., Rendall A.D.: Strong cosmic censorship for T 2-symmetric cosmological spacetimes with collisionless matter. Preprint. arXiv:gr-qc/0610075Google Scholar
  11. 11.
    Eardley D., Moncrief V.: The global existence problem and cosmic censorship in general relativity. Gen. Relat. Grav. 13, 887–892 (1981)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Geroch R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geroch R.: A method for generating new solutions of Einstein’s equations. II. J. Math. Phys. 13, 394–404 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gowdy R.: Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. 83, 203–241 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Groah J., Temple B.: Shock-wave solutions of the Einstein equations: existence and consistency by a locally inertial Glimm scheme. Mem. Am. Math. Soc. 172 (813) (2004)Google Scholar
  16. 16.
    Hawking S.W., Penrose R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. A 314, 529–548 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Isenberg J., Moncrief V.: Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes. Ann. Phys. 99, 84–122 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Isenberg J., Weaver M.: On the area of the symmetry orbits in T 2 symmetric spacetimes. Class. Quantum Grav. 20, 3783–3796 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    LeFloch P.G.: Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich, Birkhäuser, 2002Google Scholar
  20. 20.
    LeFloch P.G.: Compressible fluids in curved spacetimes. In preparationGoogle Scholar
  21. 21.
    LeFloch P.G., Mardare C.: Definition and weak stability of spacetimes with distributional curvature. Port. Math. 64, 535–573 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    LeFloch P.G., Stewart J.M.: Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry. Port. Math. 62, 349–370 (2005)MathSciNetGoogle Scholar
  23. 23.
    LeFloch P.G., Stewart J.M.: The characteristic initial value problem for plane symmetric spacetimes with weak regularity. Class. Quantum Grav. (2011)Google Scholar
  24. 24.
    Moncrief V.: Global properties of Gowdy spacetimes with \({T^3 \times \mathbb{R}}\) topology. Ann. Phys. 132, 87–107 (1981)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Penrose R.: Gravitational collapse and spacetime singularities. Phys. Rev. Lett. 14, 57–59 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rendall A.D.: Cosmic censorship and the Vlasov equation. Class. Quantum Grav. 9, 99–104 (1992)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Rendall A.D.: Crushing singularities in spacetimes with spherical, plane, and hyperbolic symmetry. Class. Quantum Grav. 12, 1517–1533 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rendall A.D.: Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry. Commun. Math. Phys. 189, 145–164 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rendall A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  30. 30.
    Rendall A.D., Ståhl F.: Shock waves in plane symmetric spacetimes. Commun. Partial Differ. Equ. 33, 2020–2039 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ringström H.: Curvature blow-up on a dense subset of the singularity in T 3-Gowdy. J. Hyper. Differ. Equ. 2, 547–564 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ringström H.: Strong cosmic censorship in T 3-Gowdy spacetimes. Ann. Math. 170, 1181–1240 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Smulevici J.: Strong cosmic censorship for T 2-symmetric spacetimes with positive cosmological constant and matter. Ann. Henri Poincaré 9, 1425–1453 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wainwright J., Ellis G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  35. 35.
    Weaver M.: On the area of the symmetry orbits in T 2-symmetric spacetimes with Vlasov matter. Class. Quantum Grav. 21, 1079–1098 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions & Centre National de la Recherche ScientifiqueUniversité Pierre et Marie Curie (Paris 6)ParisFrance
  2. 2.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein InstitutPotsdamGermany

Personalised recommendations