Advertisement

Archive for Rational Mechanics and Analysis

, Volume 202, Issue 2, pp 493–535 | Cite as

Orientability and Energy Minimization in Liquid Crystal Models

  • John M. Ball
  • Arghir ZarnescuEmail author
Article

Abstract

Uniaxial nematic liquid crystals are modelled in the Oseen–Frank theory through a unit vector field n. This theory has the apparent drawback that it does not respect the head-to-tail symmetry in which n should be equivalent to −n. This symmetry is preserved in the constrained Landau–de Gennes theory that works with the tensor \({Q=s \left(n\otimes n-\frac{1}{3} Id\right)}\). We study the differences and the overlaps between the two theories. These depend on the regularity class used as well as on the topology of the underlying domain. We show that for simply-connected domains and in the natural energy class W1,2 the two theories coincide, but otherwise there can be differences between the two theories, which we identify. In the case of planar domains with holes and various boundary conditions, for the simplest form of the energy functional, we completely characterise the instances in which the predictions of the constrained Landau–de Gennes theory differ from those of the Oseen–Frank theory.

Keywords

Manifold Energy Minimizer Boundary Data Nematic Liquid Crystal Continuous Path 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Ball, J.M., Zarnescu, A.: Partial regularity and smooth topology-preserving approximations of rough domains. In preparationGoogle Scholar
  3. 3.
    Ball, J.M., Zarnescu, A.: Orientable and non-orientable director fields for liquid crystals. In: PAMM, 7, pp. 1050701–1050704 (2007). doi: 10.1002/pamm.200700489
  4. 4.
    Ball J.M., Zarnescu A.: Orientable and non-orientable line field models for uniaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 495, 573–585 (2008)CrossRefGoogle Scholar
  5. 5.
    Bethuel F., Brezis H., Coleman B.D., Hélein F.: Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders. Arch. Rational Mech. Anal. 118(2), 149–168 (1992). doi: 10.1007/BF00375093 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. In: Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser, Boston, 1994Google Scholar
  7. 7.
    Bing, R.H.: The geometric topology of 3-manifolds. In: American Mathematical Society Colloquium Publications, vol. 40. American Mathematical Society, Providence, 1983Google Scholar
  8. 8.
    Brezis H., Mironescu P.: Composition in fractional Sobolev spaces. Discrete Contin. Dyn. Syst. 7, 241–246 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995). doi: 10.1007/BF01671566 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brezis H., Nirenberg L.: Degree theory and BMO. II. Compact manifolds with boundaries. With an appendix by the authors and Petru Mironescu. Sel. Math. (N.S.) 2(3), 309–368 (1996). doi: 10.1007/BF01587948 CrossRefzbMATHGoogle Scholar
  11. 11.
    do Carmo, M.A.: Riemannian geometry. In: Mathematics: Theory and Applications. Birkhäuser, Boston, 1992Google Scholar
  12. 12.
    Cloutier, S.G., Eakin, J.N., Guico, R.S., Sousa, M.E., Crawford, G.P., Xu, J.M.: Molecular self-organization in cylindrical nanocavities. Phys. Rev. E 73, 051703 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Conway, J.B.: Functions of one complex variable. II. In: Graduate Texts in Mathematics, vol. 159. Springer, New York, 1995Google Scholar
  14. 14.
    Evans, L., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992Google Scholar
  15. 15.
    Frank F.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 1 (1958)CrossRefGoogle Scholar
  16. 16.
    de Gennes, P.G., Prost, J. (1995). The Physics of Liquid Crystals, 2nd edn. Oxford University Press, 1995Google Scholar
  17. 17.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin, 2001. Reprint of the 1998 editionGoogle Scholar
  18. 18.
    Guillemin V., Pollack A.: Differential Topology. Prentice-Hall, Englewood Cliffs (1974)zbMATHGoogle Scholar
  19. 19.
    Hang F., Lin F.: Topology of Sobolev mappings. II. Acta Math. 191(1), 55–107 (2003). doi: 10.1007/BF02392696 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hang F., Lin F.: Topology of Sobolev mappings. IV. Discrete Contin. Dyn. Syst. 13(5) 1097–1124 (2005). doi: 10.3934/dcds.2005.13.1097 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hardt R., Lin F.H.: Partially constrained boundary conditions with energy minimizing mappings. Commun. Pure Appl. Math. 42(3), 309–334 (1989). doi: 10.1002/cpa.3160420306 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hardt R., Lin F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213(4), 575–593 (1993). doi: 10.1007/BF03025739 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, 2002Google Scholar
  24. 24.
    Hirsch, W.: Differential topology. In: Graduate Texts in Mathematics, vol. 33. Springer, New York, 1976Google Scholar
  25. 25.
    Nguyen, L., Zarnescu, A.: Refined approximation of Landau de Gennes energy minimizers. ArXiv:1006.5689Google Scholar
  26. 26.
    Lee, J.M.: Introduction to topological manifolds. In: Graduate Texts in Mathematics, vol. 202. Springer, New York, 2000Google Scholar
  27. 27.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181Google Scholar
  28. 28.
    Longa L., Trebin H.R.: Structure of the elastic free energy for chiral nematic liquid crystals. Phys. Rev. A 39, 2160 (1989)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Majumdar A., Zarnescu A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Rational Mech. Anal. 196(1), 227–280 (2010). doi: 10.1007/s00205-009-0249-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Milnor, J.W. (1965). Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville, 1965Google Scholar
  31. 31.
    Boutet de Monvel-Berthier, A., Georgescu, V., Purice, R.: A boundary value problem related to the Ginzburg-Landau model. Commun. Math. Phys. 142(1), 1–23 (1991). http://projecteuclid.org/getRecord?id=euclid.cmp/1104248488
  32. 32.
    Mottram, N.J., Newton, C.: Introduction to Q-tensor theory. Technical report, University of Strathclyde, Department of Mathematics (2004)Google Scholar
  33. 33.
    Pakzad M.R., Rivière T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003). doi: 10.1007/s000390300006 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983). http://projecteuclid.org/getRecord?id=euclid.jdg/1214437663 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn. Brandeis University, Waltham, 1999Google Scholar
  36. 36.
    Triebel H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)zbMATHGoogle Scholar
  37. 37.
    Vissenberg M., Stallinga S., Vertogen G.: Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals. Phys. Rev. E 55, 4367 (1997)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. In: Graduate Texts in Mathematics, vol. 120. Springer, New York, 1989Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK

Personalised recommendations