Archive for Rational Mechanics and Analysis

, Volume 200, Issue 3, pp 1075–1097 | Cite as

Inviscid Dynamical Structures Near Couette Flow

Article

Abstract

Consider inviscid fluids in a channel \({\{-1\leqq y\leqq1\}}\) . For the Couette flow u 0 = (y, 0), the vertical velocity of solutions to the linearized Euler equation at u 0 decays in time. Whether the same happens at the non-linear level is an open question. Here we study issues related to this problem. First, we show that in any (vorticity) \({H^{s}\left(s<\frac{3}{2}\right)}\) neighborhood of Couette flow, there exist non-parallel steady flows with arbitrary minimal horizontal periods. This implies that nonlinear inviscid damping is not true in any (vorticity) \({H^{s}\left(s<\frac{3}{2}\right)}\) neighborhood of Couette flow for any horizontal period. Indeed, the long time behaviors in such neighborhoods are very rich, including nontrivial steady flows and stable and unstable manifolds of nearby unstable shears. Second, in the (vorticity) \({H^{s}\left(s>\frac{3}{2}\right)}\) neighborhoods of Couette flow, we show that there exist no non-parallel steadily travelling flows \({\varvec{v}\left(x-ct,y\right)}\) , and no unstable shears. This suggests that the long time dynamics in \({H^{s}\left(s>\frac{3}{2}\right)}\) neighborhoods of Couette flow might be much simpler. Such contrasting dynamics in H s spaces with the critical power \({s=\frac{3}{2}}\) is a truly nonlinear phenomena, since the linear inviscid damping near Couette flow is true for any initial vorticity in L 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briggs R.J., Daugherty J.D., Levy R.H.: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids 13, 421–432 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Brown S.N., Stewartson K.: On the algebraic decay of disturbances in a stratified linear shear flow. J. Fluid Mech. 100, 811–816 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the two-dimensional Euler and linearized Euler equations. arXiv:0905.1551Google Scholar
  4. 4.
    Caglioti E., Maffei C.: Scattering theory: a possible approach to the homogenization problem for the Euler equations. Rend. Mat. Appl. (7) 17(3), 445–475 (1997)MathSciNetMATHGoogle Scholar
  5. 5.
    Case K.M.: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143–148 (1960)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Crandall M., Rabinowitz P.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Isichenko M.B.: Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett. 78, 2369–2372 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Landau L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946)Google Scholar
  9. 9.
    Li, Y.C., Lin, Z.: A resolution of the Sommerfeld paradox. Submitted. arXiv:0904.4676Google Scholar
  10. 10.
    Lin Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35, 318–356 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lin Z.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)CrossRefGoogle Scholar
  12. 12.
    Lin, Z.: Some recent results on instability of ideal plane flows. Nonlinear Partial Differential Equations and Related Analysis. Contemp. Math. vol. 371, pp. 217–229. Amer. Math. Soc., Providence, 2005Google Scholar
  13. 13.
    Lin, Z., Zeng, C.: Invariant manifolds of Euler equations. Preprint (in preparation)Google Scholar
  14. 14.
    Lin, Z., Zeng, C.: Small BGK waves and nonlinear Landau damping. Submitted. arXiv:1003.3005Google Scholar
  15. 15.
    Orr, W.Mc.F.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A, Math Astron. Phys. Sci. vol. 27, pp. 9–66, 1907Google Scholar
  16. 16.
    Pillai S., Gould R.W.: Damping and trapping in 2-D inviscid fluids. Phys. Rev. Lett. 73, 2849–2852 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Romanov V.: Stability of plane-parallel Couette flow. Funct. Anal. Appl. 7, 137–146 (1973)MATHCrossRefGoogle Scholar
  18. 18.
    Schecter D.A., Dubin D.H.E., Cass A.C., Driscoll C.F., Lansky I.M., O’Neil T.M.: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids 12, 2397–2412 (2000)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Sommerfeld A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulent Flussigkeitsbewegung. Atti IV Congr. Internat. Math., Roma 3, 116–124 (1908)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations