Advertisement

Archive for Rational Mechanics and Analysis

, Volume 199, Issue 2, pp 407–433 | Cite as

The Electronic Structure of Smoothly Deformed Crystals: Wannier Functions and the Cauchy–Born Rule

  • Weinan EEmail author
  • Jianfeng Lu
Article

Abstract

The electronic structure of a smoothly deformed crystal is analyzed for the case when the effective Hamiltonian is a given function of the nuclei by considering the regime when the scale of the deformation is much larger than the lattice parameter. Wannier functions are defined by projecting the Wannier functions for the undeformed crystal to the space spanned by the wave functions of the deformed crystal. The exponential decay of such Wannier functions is proved for the case when the undeformed crystal is an insulator. The celebrated Cauchy–Born rule for crystal lattices is extended to the present situation for electronic structure analysis.

Keywords

Spectral Projection Bloch Wave Bloch Function Floquet Theory Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanc X., Le Bris C., Lions P.-L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164, 341–381 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    des Cloizeaux J.: Analytical properties of n-dimensional energy bands and Wannier functions. Phys. Rev. 135, A698–A707 (1964)CrossRefADSGoogle Scholar
  3. 3.
    des Cloizeaux J.: Energy bands and projection operators in a crystal: analytic and asymptotic properties. Phys. Rev. 135, A685–A697 (1964)CrossRefADSGoogle Scholar
  4. 4.
    Combes J.M., Thomas L.: Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators. Commun. Math. Phys. 34, 251–270 (1973)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Dreizler R.M., Gross E.K.U.: Density Functional Theory. Springer, New York (1990)zbMATHGoogle Scholar
  6. 6.
    E W., Lu J.: The elastic continuum limit of the tight binding model. Chin. Ann. Math. Ser. B. 28, 665–675 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E, W., Lu, J.: The Kohn–Sham equation for deformed crystals, 2010. preprintGoogle Scholar
  8. 8.
    E W., Ming P.B.: Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183, 241–297 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E W., Ming P.B.: Cauchy–Born rule and the stability of the crystalline solids: dynamic problems. Acta Math. Appl. Sin. Engl. Ser. 23, 529–550 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966)zbMATHGoogle Scholar
  11. 11.
    Kivelson S.: Wannier functions in one-dimensional disordered systems: application to fractionally charged solitons. Phys. Rev. B 26, 4269–4277 (1982)CrossRefADSGoogle Scholar
  12. 12.
    Kohn W.: Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809–821 (1959)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Nenciu A., Nenciu G.: The existence of generalised Wannier functions for one-dimensional systems. Commun. Math. Phys. 190, 541–548 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Nenciu G.: Existence of the exponentially localised Wannier functions. Commun. Math. Phys. 91, 81–85 (1983)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Panati G.: Trviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Parr R., Yang W.: Density-Functional Theory of Atoms and Molecules International Series of Monographs on Chemistry. Oxford University Press, New York (1989)Google Scholar
  17. 17.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1980)Google Scholar
  18. 18.
    Simon B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A 38(3), 295–308 (1983)zbMATHGoogle Scholar
  19. 19.
    Wannier G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations