Advertisement

Archive for Rational Mechanics and Analysis

, Volume 199, Issue 1, pp 145–175 | Cite as

Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions

  • Dragoş Iftimie
  • Franck Sueur
Article

Abstract

We tackle the issue of the inviscid limit of the incompressible Navier–Stokes equations when the Navier slip-with-friction conditions are prescribed on impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensions two and three.

Keywords

Boundary Layer Energy Inequality Euler System Velocity Boundary Layer Viscous Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achdou Y., Pironneau O., Valentin F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147(1), 187–218 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Alekseenko S.N.: The existence and asymptotic representation of weak solutions of the flow problem with the condition of regular slippage along rigid wall. Sibirsk. Mat. Zh. 35(2), 235–257 (1994)MathSciNetGoogle Scholar
  3. 3.
    Barrenechea G.R., Le Tallec P., Valentin F.: New wall laws for the unsteady incompressible Navier–Stokes equations on rough domains. Math. Model. Numer. Anal. 36(2), 177–203 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(01), 197–207 (1967)CrossRefADSGoogle Scholar
  5. 5.
    Berselli L.C., Romito M.: On the existence and uniqueness of weak solutions for a vorticity seeding model. SIAM J. Math. Anal. 37(6), 1780–1799 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyer, F., Fabrie, P.: Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Mathématiques et Applications 52, 405 p. Springer, Berlin (2006)Google Scholar
  8. 8.
    Bresch, D., Milisic, V.: Higher order boundary layer correctors and wall laws derivation: a unified approach. http://arxiv.org/abs/math.AP/0611083
  9. 9.
    Carbou G., Fabrie P., Guès O.: Couche limite dans un modèle de ferromagnétisme. Commun Partial Differ. Equ. 27(7-8), 1467–1495 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Clopeau T., Mikelić A., Robert R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11(6), 1625–1636 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Ebin D.G., Marsden J.: Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. Bull. Am. Math. Soc. 75, 962–967 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grenier, E.: Boundary layers. Handbook of Mathematical Fluid Dynamics, Vol. III, 245–309. North-Holland, Amsterdam, 2004Google Scholar
  13. 13.
    Grenier E., Guès O.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differ. Equ. 143(1), 110–146 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Grubb G.: Nonhomogeneous Navier–Stokes problems in L p Sobolev spaces over exterior and interior domains. Ser. Adv. Math. Appl. Sci. 47, 46–63 (1998)MathSciNetGoogle Scholar
  15. 15.
    Grubb G., Solonnikov V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1991)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Grubb, G., Solonnikov, V.A.: A pseudo-differential treatment of general inhomogeneous initial-boundary value problems for the Navier–Stokes equation. Journées “Équations aux Dérivées Partielles” (Saint Jean de Monts, 1988), Exp. No. III, 8Google Scholar
  17. 17.
    Iftimie D., Planas G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 899–918 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Itoh S., Tanaka N., Tani A.: The initial value problem for the Navier–Stokes equations with general slip boundary condition in Hölder spaces. J. Math. Fluid Mech. 5(3), 275–301 (2003)zbMATHMathSciNetADSGoogle Scholar
  19. 19.
    Jäger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Jäger W., Mikelić A.: Couette flows over a rough boundary and drag reduction. Comm. Math. Phys. 232(3), 429–455 (2003)zbMATHMathSciNetADSGoogle Scholar
  21. 21.
    Kato T.: On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal. 25, 188–200 (1967)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kato T., Lai C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56(1), 15–28 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kelliher J.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kelliher, J.: The vanishing viscosity limit for incompressible fluids in two dimensions. Ph. D ThesisGoogle Scholar
  25. 25.
    Kiselev A.A., Ladyzhenskaya O.A.: On existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izv. Akad. Nauk SSSR 21, 655 (1957)zbMATHGoogle Scholar
  26. 26.
    Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. Handbook of Experimental Fluid Dynamics (Chapter 19). (Eds. Tropea C., Yarin A., Foss J.F.), Springer, Berlin, 2007Google Scholar
  27. 27.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969Google Scholar
  28. 28.
    Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1: incompressible models. Oxford Lecture Series in Mathematics and its Applications, Vol. 3. Clarendon Press, Oxford, 1996Google Scholar
  29. 29.
    Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36(4), 1130–1141 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Comm. Pure Appl. Math. 56(9), 1263–1293 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Navier C.-L.-M.-H.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6, 389–416 (1823)Google Scholar
  32. 32.
    Neto C., Evans D.R., Bonaccurso E., Butt H.J., Craig V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Parés C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3-4), 245–296 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Serrin, J.: Mathematical principles of classical fluid mechanics. Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), 125–263, Springer, Berlin, 1959Google Scholar
  35. 35.
    Steiger O.: Navier–Stokes equations with first Order boundary conditions. J Math. Fluid Mech. 8(4), 456–481 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Sueur F.: Couches limites: un problème inverse. Commun. Partial Differ. Equ. 31(1–3), 123–194 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Tani A., Itoh S., Tanaka N.: The initial value problem for the Navier–Stokes equations with general slip boundary condition. Adv. Math. Sci. Appl. 4(1), 51–69 (1994)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Temam R., Wang X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179(2), 647–686 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Wolibner W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698–726 (1933)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Xiao, Y., Xin, Z.: On the vanishing viscosity limit for the 3d Navier–Stokes equations with a slip boundary condition. The Institute of Mathematical Sciences. The Chinese University of Hong Kong, Hong KongGoogle Scholar
  41. 41.
    Ziane M.: On the two-dimensional Navier–Stokes equations with the free boundary condition. Appl. Math. Optim. Int. J. Appl. Stoch. 38(1), 1–19 (1998)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut Camille JordanUniversité de Lyon, Université Lyon 1, CNRS, UMR 5208Villeurbanne CedexFrance
  2. 2.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie, Université Paris 6, CNRS, UMR 7598ParisFrance

Personalised recommendations