Archive for Rational Mechanics and Analysis

, Volume 197, Issue 1, pp 139–177 | Cite as

The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation

  • Éric Cancès
  • Mathieu Lewin


In a recent article (Cancès et al. in Commun Math Phys 281:129–177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree–Fock model, the ground state electronic density matrix is decomposed as \({\gamma = \gamma^0_{\rm per} + Q_{\nu,\varepsilon_{\rm F}}}\), where \({\gamma^0_{\rm per}}\) is the ground state density matrix of the host crystal and \({Q_{\nu,\varepsilon_{\rm F}}}\) the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ε F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix \({Q_{\nu,\varepsilon_{\rm F}}}\) (which is known to be a self-adjoint Hilbert–Schmidt operator on \({L^2(\mathbb{R}^3)}\)). We show in particular that if \({\int_{\mathbb{R}^3}\,\nu \neq 0, Q_{\nu,\varepsilon_{\rm F}}}\) is not trace-class. Moreover, the associated density of charge is not in \({L^1(\mathbb{R}^3)}\) if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of \({Q_{\nu,\varepsilon_{\rm F}}}\). Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler–Wiser formula.


Dielectric Permittivity Lewin Host Crystal Schmidt Operator Electronic Density Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler S.L.: Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Baroni S., Resta R.: Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017–7021 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Cancès É., Deleurence A., Lewin M.: A new approach to the modelling of local defects in crystals: the reduced Hartree–Fock case. Commun. Math. Phys. 281, 129–177 (2008)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Cancès É., Deleurence A., Lewin M.: Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20, 294213 (2008)CrossRefGoogle Scholar
  6. 6.
    Catto I., Le Bris C., Lions P.-L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Dreizler R., Gross E.: Density Functional Theory. Springer, Berlin (1990)zbMATHGoogle Scholar
  8. 8.
    Engel G.E., Farid B.: Calculation of the dielectric properties of semiconductors. Phys. Rev. B 46, 15812–15827 (1992)CrossRefADSGoogle Scholar
  9. 9.
    Gajdoš M., Hummer K., Kresse G., Furthmüller J., Bechstedt F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Gravejat P., Lewin M., Séré É.: Ground state and charge renormalization in a nonlinear model of relativistic atoms. Commun. Math. Phys. 286, 179–215 (2009)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Hainzl C., Lewin M., Séré É.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192, 453–499 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hainzl C., Lewin M., Séré É., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Hybertsen M.S., Louie S.G.: Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. Phys. Rev. B 35, 5585–5601 (1987)CrossRefADSGoogle Scholar
  15. 15.
    Hybertsen M.S., Louie S.G.: Ab initio static dielectric matrices from the density-functional approach. II. Calculation of the screening response in diamond, Si, Ge, and LiCl. Phys. Rev. B 35, 5602–5610 (1987)CrossRefADSGoogle Scholar
  16. 16.
    Kunc K., Tosatti E.: Direct evaluation of the inverse dielectric matrix in semiconductors. Phys. Rev. B 29, 7045–7047 (1984)CrossRefADSGoogle Scholar
  17. 17.
    Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Panati G.: Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Pick R.M., Cohen M.H., Martin R.M.: Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910–920 (1970)CrossRefADSGoogle Scholar
  20. 20.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)zbMATHGoogle Scholar
  21. 21.
    Resta R., Baldereschi A.: Dielectric matrices and local fields in polar semiconductors. Phys. Rev. B 23, 6615–6624 (1981)CrossRefADSGoogle Scholar
  22. 22.
    Seiler E., Simon B.: Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Simon, B.: Trace Ideals and Their Applications. In: London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press, Cambridge, 1979Google Scholar
  24. 24.
    Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Thomas L.E.: Time dependent approach to scattering from impurities in a crystal. Commun. Math. Phys. 33, 335–343 (1973)CrossRefADSGoogle Scholar
  26. 26.
    Wiser N.: Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Université Paris-Est, CERMICS, Project-team Micmac INRIA, École des PontsMarne-la-Vallée Cedex 2France
  2. 2.CNRS and Laboratoire de Mathématiques UMR 8088Université de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations