Advertisement

Archive for Rational Mechanics and Analysis

, Volume 197, Issue 1, pp 117–138 | Cite as

Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions

  • Dorin BucurEmail author
  • Eduard Feireisl
  • Šárka Nečasová
Article

Abstract

We consider a family of solutions to the evolutionary Navier–Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.

Keywords

Stokes Problem Stokes System Energy Functional Wall Roughness Positive Borel Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amirat A.A., Bresch D., Lemoine J., Simon J.: Effect of rugosity on a flow governed by stationary Navier–Stokes equations. Quart. Appl. Math. 59, 768–785 (2001)MathSciNetGoogle Scholar
  2. 2.
    Amirat A.A., Climent E., Fernández-Cara E., Simon J.: The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Models. Methods Appl. 24, 255–276 (2001)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Ansini N., Garroni A.: Γ-convergence of functionals on divergence-free fields. ESAIM Control Optim. Calc. Var. 13(4), 809–828 (2007) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Preprint (2006)Google Scholar
  5. 5.
    Bogovskii M.E.: Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980)MathSciNetGoogle Scholar
  6. 6.
    Bouchitté G., Seppecher P.: Cahn and Hilliard fluid on an oscillating boundary. Motion by Mean Curvature and Related Topics (Trento, 1992), de Gruyter, Berlin, 23–42, 1994Google Scholar
  7. 7.
    Bucur D., Feireisl E., Nečasová Š., Wolf J.: On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differ. Equ. 244, 2890–2908 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bucur D., Feireisl E., Nečasová Š.: On the asymptotic limit of flows past a ribbed boundary J. Math. Fluid Mech. 10(4), 554–568 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Casado-Díaz J., Fernández-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chenais D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(2), 189–219 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dal Maso G.: An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, Vol. 8. Birkhäuser Boston, Boston, 1993Google Scholar
  12. 12.
    Dal Maso G., Defranceschi A., Vitali E.: Integral representation for a class of C 1-convex functionals. J. Math. Pures Appl. (9) 73(1), 1–46 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Defranceschi A., Vitali E.: Limits of minimum problems with convex obstacles for vector valued functions. Appl. Anal. 52(1–4), 1–33 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    El Jarroudi M., Brillard A.: Relaxed Dirichlet problem and shape optimization within the linear elasticity framework. NoDEA Nonlinear Differ. Equ. Appl. 11(4), 511–528 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Galdi G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, I. Springer, New York (1994)Google Scholar
  16. 16.
    Henrot A., Pierre M.: Variation et optimisation de formes. Une analyse géométrique. Mathématiques & Applications (Berlin), Vol. 48. Springer, Berlin, 2005Google Scholar
  17. 17.
    Hesla T.I.: Collision of smooth bodies in a viscous fluid: A mathematical investigation. Ph.D. Thesis, Minnesota, 2005Google Scholar
  18. 18.
    Hillairet M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Preprint, ENS Lyon, 2006Google Scholar
  19. 19.
    Jaeger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)zbMATHGoogle Scholar
  21. 21.
    Málek J., Rajagopal K.R.: Mathematical issues concerning the Navier–Stokes equations and some of its generalizations. Evolutionary Equations Vol. II. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, pp. 371–459, 2005Google Scholar
  22. 22.
    Moffat H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964)CrossRefADSGoogle Scholar
  23. 23.
    Nitsche J.A.: On Korn’s second inequality. RAIRO Anal. Numer. 15, 237–248 (1981)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Priezjev N.V., Darhuber A.A., Troian S.M.: Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Priezjev N.V., Troian S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Sohr H.: The Navier–Stokes equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  27. 27.
    Temam R.: Navier–Stokes equations. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dorin Bucur
    • 1
    Email author
  • Eduard Feireisl
    • 2
  • Šárka Nečasová
    • 2
  1. 1.Laboratoire de Mathématiques, CNRS UMR 5127Université de SavoieLe-Bourget-Du-LacFrance
  2. 2.Mathematical Institute of the Academy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations