Advertisement

Archive for Rational Mechanics and Analysis

, Volume 196, Issue 3, pp 907–950 | Cite as

Concentration of Solutions for Some Singularly Perturbed Mixed Problems: Existence Results

  • Jesus Garcia Azorero
  • Andrea Malchiodi
  • Luigi Montoro
  • Ireneo Peral
Article

Abstract

In this paper,we study the asymptotic behavior of some solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions. We prove that, under suitable geometric conditions on the boundary of the domain, there exist solutions which approach the intersection of the Neumann and the Dirichlet parts as the singular perturbation parameter tends to zero.

Keywords

Neumann Boundary Condition Neumann Problem Pointwise Estimate Critical Point Theory Natural Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({\mathbb{R}^n}\). Birkhäuser, Progr. in Math., Vol. 240, 2005Google Scholar
  3. 3.
    Ambrosetti A., Malchiodi A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, Vol. 104. Cambridge University Press, Cambridge (2007)Google Scholar
  4. 4.
    Ambrosetti A., Malchiodi A., Ni W.M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235, 427–466 (2003)CrossRefMathSciNetADSzbMATHGoogle Scholar
  5. 5.
    Ambrosetti A., Malchiodi A., Ni W.M.: Singularly Perturbed Elliptic Equations with Symmetry: existence of Solutions Concentrating on Spheres, Part II. Indiana Univ. Math. J. 53(2), 297–329 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Ambrosetti A., Malchiodi A., Secchi S.: Multiplicity results for some nonlinear singularly perturbed elliptic problems on \({\mathbb{R}^n}\). Arch. Ration. Mech. Anal. 159(3), 253–271 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Badiale, M., D’Aprile, T.: Concentration around a sphere for a singularly perturbed Schrödinger equation. Nonlinear Anal. 49(7), Ser. A: Theory Methods, 947–985 (2002)Google Scholar
  9. 9.
    Bartsch, T., Peng, S.: Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, preprintGoogle Scholar
  10. 10.
    Benci V., D’Aprile T.: The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. J. Differ. Equ. 184(1), 109–138 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Casten R.G., Holland C.J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Eq. 27(2), 266–273 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Dancer E.N., Yan S.: Multipeak solutions for a singularly perturbed Neumann problem. Pac. J. Math. 189(2), 241–262 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    D’Aprile T.: On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations. Diff. Int. Equ. 16(3), 349–384 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Del Pino M., Felmer P., Kowalczyk M.: Boundary spikes in the Gierer–Meinhardt system. Commun. Pure Appl. Anal. 1(4), 437–456 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Del Pino M., Felmer P., Wei J.: On the role of the mean curvature in some singularly perturbed Neumann problems. S.I.A.M. J. Math. Anal. 31, 63–79 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Del Pino M., Kowalczyk M., Wei J.: Multi-bump ground states of the Gierer– Meinhardt system in \({\mathbb{R}^2}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 53–85 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Garcia Azorero, J., Malchiodi, A., Montoro, L., Peral, I.: Concentration of Solutions for Some Singularly Perturbed Mixed Problems: Asymptotics of Minimal Energy Solutions, to appear in Annales de l’Institut Henri Poincaré Analyse Non LinéaireGoogle Scholar
  19. 19.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin), 12, 30–39 (1972)CrossRefGoogle Scholar
  20. 20.
    Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985Google Scholar
  21. 21.
    Grossi M., Pistoia A., Wei J.: Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. Calc. Var. Partial Differ. Equ. 11(2), 143–175 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Gui C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84, 739–769 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Gui C., Wei J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52(3), 522–538 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gui C., Wei J., Winter M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 47–82 (2000)CrossRefMathSciNetADSzbMATHGoogle Scholar
  25. 25.
    Kwong M.K.: Uniqueness of positive solutions of \({-\Delta{u} + u + u^p = 0}\) in \({\mathbb{R}^n}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Li Y.Y.: On a singularly perturbed equation with Neumann boundary conditions. Comm. Partial Differ. Equ. 23, 487–545 (1998)zbMATHGoogle Scholar
  27. 27.
    Li Y.Y., Nirenberg L.: The Dirichlet problem for singularly perturbed elliptic equations. Comm. Pure Appl. Math. 51, 1445–1490 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Lin C.S., Ni W.M., Takagi I.: Large amplitude stationary solutions to a chemotaxis systems. J. Differ. Equ. 72, 1–27 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Mahmoudi F., Malchiodi A.: Concentration on minimal submanifolds for a singularly perturbed Neumann problem. Adv. Math. 209460–525 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Malchiodi A.: Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains.. G.A.F.A. 151162–1222 (2005)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Malchiodi A., Montenegro M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Comm. Pure Appl. Math 15, 1507–1568 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Malchiodi A., Montenegro M.: Multidimensional boundary-layers for a singularly perturbed Neumann problem. Duke Math. J. 124105–143 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Malchiodi A., Ni W.M., Wei J.: Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 143–163 (2005)CrossRefMathSciNetADSzbMATHGoogle Scholar
  34. 34.
    Malchiodi A., Wei J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48731–768 (1995)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Matano H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15401–454 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Molle R., Passaseo D.: Concentration phenomena for solutions of superlinear elliptic problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 2363–84 (2006)CrossRefMathSciNetADSzbMATHGoogle Scholar
  37. 37.
    Ni W.M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Am. Math. Soc. 459–18 (1998)zbMATHGoogle Scholar
  38. 38.
    Ni W.M., Takagi I.: On the shape of least-energy solution to a semilinear Neumann problem. Comm. Pure Appl. Math. 41, 819–851 (1991)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Ni W.M., Takagi I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Ni W.M., Wei J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48, 731–768 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Oh Y.G.: On positive Multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials. Comm. Math. Phys. 131, 223–253 (1990)CrossRefMathSciNetADSzbMATHGoogle Scholar
  42. 42.
    Stein E.: Singular integrals and differentiability of functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  43. 43.
    Turing A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. Ser B Biol. Sci. 237, 37–72 (1952)CrossRefADSGoogle Scholar
  44. 44.
    Wang Z.Q.: On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Ration. Mech. Anal. 120, 375–399 (1992)CrossRefzbMATHGoogle Scholar
  45. 45.
    Wei J.: On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem. J. Differ. Equ. 134, 104–133 (1997)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wei J.: On the effect of domain geometry in singular perturbation problems. Differ. Int. Equ. 13(1-3), 15–45 (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jesus Garcia Azorero
    • 1
  • Andrea Malchiodi
    • 2
  • Luigi Montoro
    • 3
  • Ireneo Peral
    • 1
  1. 1.Departamento de MatemáticasUAMMadridSpain
  2. 2.SISSATriesteItaly
  3. 3.Dipartimento di MatematicaUNICALArcavacata di Rende, CosenzaItaly

Personalised recommendations