Archive for Rational Mechanics and Analysis

, Volume 196, Issue 1, pp 227–280 | Cite as

Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

Article

Abstract

We study global minimizers of a continuum Landau–De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W1,2, to a global minimizer predicted by the Oseen–Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen–Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau–De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau–De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, F.J., Lieb, E.H.: Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds. Ann. Math. (2) 128(3), 483–530 (1988)Google Scholar
  2. 2.
    Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystals (in preparation)Google Scholar
  3. 3.
    Bethuel F., Brezis H., Hélein F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1(2), 123–148 (1993)MATHCrossRefGoogle Scholar
  4. 4.
    Bethuel, F., Chiron, D.: Some questions related to the lifting problem in Sobolev spaces. Perspectives in nonlinear partial differential equations, Contemp. Math., 446. Amer. Math. Soc., Providence, RI, 125–152, 2007Google Scholar
  5. 5.
    Brezis H.: The interplay between analysis and topology in some nonlinear PDE problems. Bull. Am. Math. Soc. (N.S.) 40(2), 179–201 (2003) (electronic)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen Y., Lin F.: Remarks on approximate harmonic maps. Comment. Math. Helv. 70(1), 161–169 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Davis T., Gartland E.: Finite element analysis of the Landau–De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35, 336–362 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ericksen J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1990)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Evans L.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATHGoogle Scholar
  10. 10.
    Fraenkel, L.E.: On regularity of the boundary in the theory of Sobolev spaces. Proc. Lond. Math. Soc. (3) 39(3), 385–427 (1979)Google Scholar
  11. 11.
    Frank F.C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 1 (1958)CrossRefGoogle Scholar
  12. 12.
    Friedman A.: On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations. J. Math. Mech. 7, 43–59 (1958)MATHMathSciNetGoogle Scholar
  13. 13.
    De Gennes P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1974)Google Scholar
  14. 14.
    Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983Google Scholar
  15. 15.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg, 224, 2, 1977Google Scholar
  16. 16.
    Hardt R., Lin F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213(4), 575–593 (1993)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hardt R., Kinderlehrer D., Lin F.H.: Existence and partial regularity of static liquid crystals configurations. Comm. Math. Phys. 105, 547–570 (1986)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Kato T.: Perturbation theory for linear operators, rundlehren der Mathematischen Wissenschaften, Band 132. Springer, Berlin (1976)Google Scholar
  19. 19.
    Lin F.H.: On nematic liquid crystals with variable degree of orientation. Comm. Pure Appl. Math. 44(4), 453–468 (1991)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lin F.H., Liu C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)MathSciNetGoogle Scholar
  21. 21.
    Lin F., Poon C.: On Ericksen’s model for liquid crystals. J. Geom. Anal. 4(3), 379–392 (1994)MATHMathSciNetGoogle Scholar
  22. 22.
    Lin F., Riviére T.: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. (JEMS) 1(3), 237–311 (1999)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Majumdar, A.: Equilibrium order parameters of liquid crystals in the Landau–De Gennes theory, preprint, 2008Google Scholar
  24. 24.
    De Matteis G., Virga E.G.: Tricritical points in biaxial liquid crystal phases. Phys. Rev. E 71, 061703 (2005)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Mkaddem S., Gartland E.C.: Fine structure of defects in radial nematic droplets. Phys. Rev. E. 62, 6694–6705 (2000)CrossRefADSGoogle Scholar
  26. 26.
    Moser R.: Partial Iegularity for Harmonic Maps and Related Problems. World Scientific Publishing, Hackensack (2005)Google Scholar
  27. 27.
    Mottram, N.J., Newton, C.: Introduction to Q-tensor Theory. University of Strathclyde, Department of Mathematics, Research Report, 10 (2004)Google Scholar
  28. 28.
    Nomizu K.: Characteristic roots and vectors of a differentiable family of symmetric matrices. Linear Multilinear Algebra 1, 159–162 (1973)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Priestley E.B., Wojtowicz P.J., Sheng P.: Intorduction to Liquid Crystals. Plenum, New York (1975)Google Scholar
  30. 30.
    Rosso R., Virga E.: Metastable nematic hedgehogs. J. Phys. A Math. Gen. 29, 4247–4264 (1996)MATHCrossRefADSGoogle Scholar
  31. 31.
    Schoen, R.: Analytic Aspects of the Harmonic Map Problem. Seminar on Nonlinear Partial Differential Equations. (Chern, S.S. Ed. MSRI Publications 2, Springer, Heidelberg, 1984Google Scholar
  32. 32.
    Schoen R., Uhlenbeck K.: A regularity theory for harmonic mappings. J. Diff. Geom. 17, 307–335 (1982)MATHMathSciNetGoogle Scholar
  33. 33.
    Taylor, M.E.: Partial Differential Equations. III. Nonlinear Equations. Applied Mathematical Sciences, 117. Springer, New York, 1997Google Scholar
  34. 34.
    Virga E.G.: Variational Theories for Liquid Crystals. Chapman and Hall, London (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK

Personalised recommendations