Archive for Rational Mechanics and Analysis

, Volume 193, Issue 2, pp 227–253 | Cite as

Stability and Uniqueness for the Spatially Homogeneous Boltzmann Equation with Long-Range Interactions

Article

Abstract

In this paper, we prove some a priori stability estimates (in weighted Sobolev spaces) for the spatially homogeneous Boltzmann equation without angular cutoff (covering all physical collision kernels). These estimates are conditional on some regularity estimates on the solutions, and therefore reduce the stability and uniqueness issue to one of proving suitable regularity bounds on the solutions. We then prove such regularity bounds for a class of interactions including the so-called (non-cutoff and non-mollified) hard potentials and moderately soft potentials. In particular, we obtain the first result of global existence and uniqueness for these long-range interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arkeryd L.: On the Boltzmann equation. Arch. Rational Mech. Anal. 45, 1–34 (1972)MATHADSMathSciNetGoogle Scholar
  3. 3.
    Bobylev A.V., Dukes P., Illner R., Victory H.D.: On Vlasov-Manev equations. I. Foundations, properties, and nonglobal existence. J. Stat. Phys. 88, 885–911 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Cercignani C.: The Boltzmann Equation and its Applications. Springer, New York (1988)MATHGoogle Scholar
  5. 5.
    Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)MATHGoogle Scholar
  6. 6.
    Desvillettes: Some applications of the method of moments for the homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 123, 387–395 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Desvillettes L., Mouhot C.: About L p estimates for the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 127–142 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Desvillettes L., Mouhot C.: Large time behavior for the a priori bounds for the solutions to the spatially homogeneous Boltzmann equation with soft potentials. Asympt. Anal. 54, 235–245 (2007)MATHMathSciNetGoogle Scholar
  9. 9.
    Desvillettes, L., Mouhot, C.: Entropy production estimates and asymptotic behavior for the spatially homogeneous Boltzmann equation without cutoff. work in progressGoogle Scholar
  10. 10.
    Desvillettes L., Wennberg B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Partial Differ. Equ. 29, 133–155 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fournier N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without cutoff for pseudo-Maxwellian molecules. J. Stat. Phys. 125, 927–946 (2006)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Illner R., Victory H.D., Dukes P., Bobylev A.V.: On Vlasov-Manev equations. II. Local existence and uniqueness. J. Stat. Phys. 91(3–4), 625–654 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lu X., Wennberg B.: Solutions with increasing energy for the spatially homogeneous Boltzmann equation. Nonlinear Anal. Real World Appl. 3, 243–258 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173, 169–212 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mouhot C.: Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions. Comm. Partial Differ. Equ. 30, 881–917 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Toscani G., Villani C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Villani C.: On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273–307 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of mathematical fluid dynamics, Vol. I, 71–305. North-Holland, Amsterdam, 2002Google Scholar
  20. 20.
    Wennberg B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86, 1053–1066 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Wennberg B.: Regularity in the Boltzmann equation and the Radon transform. Comm. Partial Differ. Equ. 19, 2057–2074 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.CMLA, ÉNS CachanCachan CedexFrance
  2. 2.CNRS & CEREMADEUniv. Paris IX-DauphineParis Cedex 16France

Personalised recommendations