Existence of Atoms and Molecules in the Mean-Field Approximation of No-Photon Quantum Electrodynamics

Article

Abstract

The Bogoliubov–Dirac–Fock (BDF) model is the mean-field approximation of no-photon quantum electrodynamics. The present paper is devoted to the study of the minimization of the BDF energy functional under a charge constraint. An associated minimizer, if it exists, will usually represent the ground state of a system of N electrons interacting with the Dirac sea, in an external electrostatic field generated by one or several fixed nuclei. We prove that such a minimizer exists when a binding (HVZ-type) condition holds. We also derive, study and interpret the equation satisfied by such a minimizer. Finally, we provide two regimes in which the binding condition is fulfilled, obtaining the existence of a minimizer in these cases. The first is the weak coupling regime for which the coupling constant α is small whereas αZ and the particle number N are fixed. The second is the non-relativistic regime in which the speed of light tends to infinity (or equivalently α tends to zero) and Z, N are fixed. We also prove that the electronic solution converges in the non-relativistic limit towards a Hartree–Fock ground state.

References

  1. 1.
    Anderson C.D.: The positive electron. Phys. Rev. 43, 491–494 (1933)CrossRefADSGoogle Scholar
  2. 2.
    Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bach V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bach V., Barbaroux J.-M., Helffer B., Siedentop H.: On the stability of the relativistic electron–positron field. Commun. Math. Phys. 201, 445–460 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bach V., Lieb E.H., Loss M., Solovej J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76(1–2), 3–89 (1994)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bhatia R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  8. 8.
    Borwein J., Preiss D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303(2), 517–527 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chaix, P.: Une Méthode de Champ Moyen Relativiste et Application à l’Etude du Vide de l’Electrodynamique Quantique. PhD Thesis, University Paris VI (1990)Google Scholar
  10. 10.
    Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov–Dirac–Fock formalism. J. Phys. B. 22, 3791–3814 (1989)CrossRefGoogle Scholar
  11. 11.
    Chaix P., Iracane D., Lions P.L.: From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation. J. Phys. B. 22, 3815–3828 (1989)CrossRefADSGoogle Scholar
  12. 12.
    Dietz K., Hess B.A.: Hartree–Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing. J. Phys. E At. Mol. Opt. Phys. 24, 1129–1142 (1991)CrossRefADSGoogle Scholar
  13. 13.
    Dolbeault J., Esteban M.J., Séré E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174(1), 208–226 (2000)MATHGoogle Scholar
  14. 14.
    Dirac P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928)CrossRefADSGoogle Scholar
  15. 15.
    Dirac P.A.M.: A theory of electrons and protons. Proc. R. Soc. A 126, 360–365 (1930)CrossRefADSGoogle Scholar
  16. 16.
    Dirac, P.A.M.: Théorie du positron. Solvay report, pp.203–212 (1934). Gauthier-Villars, Paris. XXV, 353 SGoogle Scholar
  17. 17.
    Dirac P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)CrossRefGoogle Scholar
  18. 18.
    Engel E., Dreizler R.M.: Field-theoretical approach to a relativistic Thomas–Fermi–Dirac–Weisäcker model. Phys. Rev. A 35(9), 3607–3618 (1987)CrossRefADSGoogle Scholar
  19. 19.
    Esteban M.J., Séré E.: Solutions of the Dirac–Fock equations for atoms and molecules. Commun. Math. Phys. 203, 499–530 (1999)MATHCrossRefADSGoogle Scholar
  20. 20.
    Esteban M.J., Séré E.: Nonrelativistic limit of the Dirac–Fock equations. Ann. Henri Poincaré 2(5), 941–961 (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Esteban M.J., Séré E.: A max-min principle for the ground state of the Dirac–Fock functional. Contemp. Math. 307, 135–141 (2002)Google Scholar
  22. 22.
    Foldy L.L., Eriksen E.: Some physical consequences of vacuum polarization. Phys. Rev. 95(4), 1048–1051 (1954)MATHCrossRefADSGoogle Scholar
  23. 23.
    Ghoussoub N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, London (1993)MATHGoogle Scholar
  24. 24.
    Glauber R., Rarita W., Schwed P.: Vacuum polarization effects on energy levels in μ-mesonic atoms. Phys. Rev. 120(2), 609–613 (1960)MATHCrossRefADSGoogle Scholar
  25. 25.
    Gomberoff L., Tolmachev V.: Hartree–Fock approximation in quantum electrodynamics. Phys. Rev. D 3(8), 1796–1804 (1971)CrossRefADSGoogle Scholar
  26. 26.
    Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Hainzl C., Lewin M., Séré E.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)MATHCrossRefADSGoogle Scholar
  28. 28.
    Hainzl C., Lewin M., Séré E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A Math. Gen. 38, 4483–4499 (2005)MATHCrossRefADSGoogle Scholar
  29. 29.
    Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics. The no-photon case. Commun. Pure Appl. Math. 60(4), 546–596 (2007)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hamm A., Schütte D.: How to remove divergences from the QED-Hartree approximation. J. Phys. A Math. Gen. 23, 3969–3982 (1990)CrossRefADSGoogle Scholar
  31. 31.
    Heisenberg W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–223 (1934)MATHCrossRefADSGoogle Scholar
  32. 32.
    Hunziker W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)MATHMathSciNetGoogle Scholar
  33. 33.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Heidelberg (1966)MATHGoogle Scholar
  34. 34.
    Kato, T.: Notes on projections and perturbation theory. Technical report No 9, University of California (1955)Google Scholar
  35. 35.
    Klaus M.: Non-regularity of the Coulomb potential in quantum electrodynamics. Helv. Phys. Acta 53, 36–39 (1980)MathSciNetGoogle Scholar
  36. 36.
    Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50, 779–802 (1977)MathSciNetGoogle Scholar
  37. 37.
    Lieb E.H.: Variational principle for Many-Fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A. 29, 3018–3028 (1984)CrossRefADSGoogle Scholar
  39. 39.
    Lieb E.H., Loss M.: Existence of atoms and molecules in non-relativistic quantum electrodynamics. Adv. Theor. Math. Phys. 7(4), 667–710 (2003)MATHMathSciNetGoogle Scholar
  40. 40.
    Lieb E.H., Siedentop H.: Renormalization of the regularized relativistic electron–positron field. Commun. Math. Phys. 213(3), 673–683 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Lions, P.-L.: The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Anal. non-linéaire, Ann. IHP 1, 109–145 (1984). Part. II: Anal. non-linéaire, Ann. IHP 1, 223–283 (1984)Google Scholar
  43. 43.
    Lions P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)MATHCrossRefADSGoogle Scholar
  44. 44.
    Mohr P.J., Plunien G., Soff G.: QED corrections in heavy atoms. Phys. Rep. 293(5&6), 227–372 (1998)CrossRefGoogle Scholar
  45. 45.
    Nenciu G.: Existence of spontaneous pair creation in the external field approximation of Q.E.D. Commun. Math. Phys. 109, 303–312 (1987)MATHCrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Paturel E.: Solutions of the Dirac equations without projector. Ann. Henri Poincaré 1, 1123–1157 (2000)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Reinhard P.-G., Greiner W.: Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219–295 (1977)CrossRefADSGoogle Scholar
  48. 48.
    Reinhard P.-G., Greiner W., Arenhövel H.: Electrons in strong external fields. Nucl. Phys. A, 166, 173–197 (1971)CrossRefADSGoogle Scholar
  49. 49.
    Reinhardt J., Müller B., Greiner W.: Theory of positron production in heavy-ion collision. Phys. Rev. A, 24(1), 103–128 (1981)CrossRefADSGoogle Scholar
  50. 50.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, Inc., New York, 1980MATHGoogle Scholar
  51. 51.
    Ruijsenaars S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys. 18(3), 517–526 (1977)CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Scharf G., Seipp H.P.: Charged vacuum, spontaneous positron production and all that. Phys. Lett. 108B(3), 196–198 (1982)ADSGoogle Scholar
  53. 53.
    Schwinger J.: Quantum electrodynamics I. A covariant formulation. Phys. Rev. 74(10), 1439–1461 (1948)MATHCrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Schwinger J.: Quantum electrodynamics II. Vacuum polarization and self-energy. Phys. Rev. 75(4), 651–679 (1949)MATHMathSciNetGoogle Scholar
  55. 55.
    Schwinger J.: On Gauge invariance and vacuum polarization. Phys. Rev. II. Ser. 82(5), 664–679 (1951)MATHADSMathSciNetGoogle Scholar
  56. 56.
    Seiler E., Simon B.: Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Simon, B.: Trace ideals and their applications. London Mathematical Society Lecture Notes Series, vol. 35. Cambridge University Press, London, 1979Google Scholar
  58. 58.
    Swirles B.: The relativistic self-consistent field. Proc. R. Soc. A 152, 625–649 (1935)MATHCrossRefADSGoogle Scholar
  59. 59.
    Thaller B.: The Dirac Equation. Springer, Heidelberg (1992)Google Scholar
  60. 60.
    Tix C.: Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B 405, 293–296 (1997)CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Tix C.: Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Bull. Lond. Math. Soc. 30(3), 283–290 (1998)MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Van Winter, C.: Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2(8), (1964)Google Scholar
  63. 63.
    Zhislin G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles (Russian). Trudy Moskov. Mat. Obšč9, 81–120 (1960)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.CNRS and Département de Mathématiques (CNRS UMR 8088)Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  3. 3.CEREMADE (CNRS UMR 7534)Université Paris-DauphineParis Cedex 16France

Personalised recommendations