Archive for Rational Mechanics and Analysis

, Volume 192, Issue 2, pp 311–330 | Cite as

On the Symmetry of Minimizers

  • Mihai MarişEmail author


For a large class of variational problems we prove that minimizers are symmetric whenever they are C1.


Orthonormal Basis Variational Problem Lagrange Equation Radial Symmetry Quasilinear Elliptic Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball J.M., Mizel V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Ration. Mech. Anal. 90(4), 325–388 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bartsch T., Weth T., Willem M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berestycki H., Lions P.-L.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)zbMATHGoogle Scholar
  4. 4.
    Brock F.: Positivity and radial symmetry of solutions to some variational problems in R N. J. Math. Anal. Appl. 296, 226–243 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Y.-Z., Wu, L.-C.: Second Order Elliptic Equations and Elliptic Systems. Translations of Mathematical Monographs, vol.174. AMS, Providence, 1998Google Scholar
  6. 6.
    Ferrero A., Gazzola F.: On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations. Adv. Differ. Equ. 8(9), 1081–1106 (2003)zbMATHGoogle Scholar
  7. 7.
    Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)zbMATHGoogle Scholar
  8. 8.
    Giaquinta M.: Introduction to the Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser Verlag, Basel (1993)zbMATHGoogle Scholar
  9. 9.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ladyzhenskaya O.A., Ural’tseva N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)zbMATHGoogle Scholar
  11. 11.
    Lopes O.: Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differ. Equ. 124, 378–388 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lopes O.: Radial and nonradial minimizers for some radially symmetric functionals. Eletr. J. Differ. Equ. 3, 1–14 (1996)zbMATHGoogle Scholar
  13. 13.
    Lopes O., Mariş M.: Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254(2), 535–592 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs. AMS, Providence, 1997Google Scholar
  15. 15.
    Pacella F., Weth T.: Symmetry of solutions to semilinear elliptic equations via Morse index. Proc. Am. Math. Soc. 135(6), 1753–1762 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pucci P., Serrin J., Zou H.: A strong maximum principle and a compact support principle for singular elliptic inequalities. J. Math. Pures Appl. 78, 769–789 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Smets D., Willem M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. PDE 18, 57–75 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York, 1966Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Département de Mathématiques UMR 6623Université de Franche-ComtéBesançonFrance

Personalised recommendations