Archive for Rational Mechanics and Analysis

, Volume 192, Issue 1, pp 165–186 | Cite as

The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations

Article

Abstract

In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.

Keywords

Water Wave Wave Breaking Holm Equation Maximal Existence Time Plunging Breaker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alinhac, S., Gérard, P.: Opérateurs Pseudo-différentiels et Théorème de Nash-Moser. Savoirs Actuels. InterEditions, Paris; Editions du Centre National de la Recherche Scientifique (CNRS), Meudon, 190 pp., 1991Google Scholar
  2. 2.
    Angulo J., Bona J.L., Linares F., Scialom M.: Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case. Nonlinearity 15, 759–786 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alvarez-Samaniego B., Lannes D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alvarez-Samaniego B., Lannes D.: A Nash–Moser theorem for singular evolution equations. Application to the Serre and Green–Naghdi equations. Indiana Univ. Math. J. 57, 97–131 (2008)MATHGoogle Scholar
  5. 5.
    Benjamin T.B., Bona J.L., Mahoney J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 227, 47–78 (1972)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rat. Mech. Anal. 183, 215–239 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Constantin A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Constantin A., Gerdjikov V.S., Ivanov R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Constantin A., Strauss W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci 12, 415–422 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Craik A.D.D.: The origins of water wave theory. Ann. Rev. Fluid Mech. 36, 1–28 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Degasperis A., Holm D., Hone A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)MathSciNetGoogle Scholar
  14. 14.
    Degasperis A., Procesi M. Asymptotic integrability. Symmetry and Perturbation Theory (Eds. Degasperis A. and Gaeta G.) World Scientific, Singapore, 23–37, 1999Google Scholar
  15. 15.
    Drazin P.G., Johnson R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  16. 16.
    Escher J., Liu Y., Yin Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fokas A.S., Fuchssteiner B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 821–831 (1981)MATHGoogle Scholar
  18. 18.
    Fornberg B., Whitham G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. A 289, 373–404 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Green A.E., Naghdi P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Ivanov R.I.: On the integrability of a class of nonlinear dispersive wave equations. J. Nonlinear Math. Phys. 12, 462–468 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  22. 22.
    Johnson R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 457, 63–82 (2002)ADSMathSciNetMATHGoogle Scholar
  23. 23.
    Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422 (1895)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lenells J.: Conservation laws of the Camassa–Holm equation. J. Phys. A 38, 869–880 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li Y.A.: A shallow-water approximation to the full water wave problem. Commun. Pure Appl. Math. 59, 1225–1285 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Matsuno Y.: The N-soliton solution of the Degasperis–Procesi equation. Inverse Probl. 21, 2085–2101 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    McKean H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Molinet L.: On well-posedness results for the Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Peregrine D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    Souganidis P.E., Strauss W.A.: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinburgh Sect. A 114, 195–212 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Stoker J.J.: Water Waves. Interscience Publ., New York (1957)MATHGoogle Scholar
  32. 32.
    Tao T. Low-regularity global solutions to nonlinear dispersive equations. Surveys in Analysis and Operator Theory, Proc. Centre Math. Appl. Austral. Nat. Univ., 19–48, 2002Google Scholar
  33. 33.
    Whitham G.B. Linear and Nonlinear Waves. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of MathematicsTrinity CollegeDublin 2Ireland
  2. 2.Université Bordeaux I, IMB and CNRS UMR 5251Talence CedexFrance

Personalised recommendations