Advertisement

Archive for Rational Mechanics and Analysis

, Volume 190, Issue 2, pp 227–265 | Cite as

Sharp-Interface Nematic-Isotropic Phase Transformations With Flow

  • Eliot FriedEmail author
Article

Abstract

We develop a sharp-interface theory for phase transformations between the isotropic and uniaxial nematic phases of a flowing liquid crystal. Aside from conventional evolution equations for the bulk phases and corresponding interface conditions, the theory includes a supplemental interface condition expressing the balance of configurational momentum. As an idealized illustrative application of the theory, we consider the problem of an evolving spherical droplet of the isotropic phase surrounded by the nematic phase in a radially-oriented state. For this problem, the bulk and interfacial equations collapse to a single nonlinear second-order ordinary differential equation for the radius of the droplet—an equation which, in essence, expresses the balance of configurational momentum on the interface. This droplet evolution equation, which closely resembles a previously derived and extensively studied equation for the expansion of contraction of a spherical gas bubble in an incompressible viscous liquid, includes terms accounting for the curvature elasticity and viscosity of the nematic phase, interfacial energy, interfacial viscosity, and the ordering kinetics of the phase transformation. We determine the equilibria of this equation and study their stability. Additionally, we find that motion of the interface generates a backflow, without director reorientation, in the nematic phase. Our analysis indicates that a backflow measurement has the potential to provide an independent means to determine the density difference between the isotropic and uniaxial nematic phases.

Keywords

Momentum Balance Nematic Phase Isotropic Phase Dissipation Inequality MBBA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson D.M., Cermelli P., Fried E., Gurtin M.E., McFadden G.B. (2007) General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids. J. Fluid Mech. 581:323–370zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Anderson D.R., Carlson D.E., Fried E. (1999) A continuum-mechanical theory for nematic elastomers. J. Elast. 56:33–58CrossRefMathSciNetGoogle Scholar
  3. 3.
    Brennen C.E. (1995) Cavitation and Bubble Dynamics. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Cermelli P., Fried E. (1997) The influence of inertia on the configurational forces in a deformable solid. Proc. R. Soc. Lond. A 458:1915–1927MathSciNetGoogle Scholar
  5. 5.
    Cermelli P., Fried E. (2002) The evolution equation for a disclination in a nematic liquid crystal. Proc. R. Soc. Lond. A 458:1–20zbMATHADSMathSciNetGoogle Scholar
  6. 6.
    Cermelli P., Fried E., Gurtin M.E. (2004) Sharp-interface nematic-isotropic phase transitions without flow. Arch. Ration. Mech. Anal. 174:151–178zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cermelli P., Fried E., Gurtin M.E. (2005) Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544:339–351zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Chen Y.-C., Fried E. (2006) Uniaxial nematic elastomers: constitutive framework and a simple application. Proc. R. Soc. Lond. A 462:1295–1314zbMATHADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ericksen J.L. (1960) Anisotropic fluids. Arch. Ration. Mech. Anal. 4:231–237zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ericksen J.L. (1961) Conservation laws for liquid crystals. Trans. Soc. Rheol. 5:23–34CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ericksen J.L. (1976) Equilibrium theory of liquid crystals. Adv. Liquid Cryst. 2:233–289Google Scholar
  12. 12.
    Frank F.C. (1958) On the theory of liquid crystals. Discuss. Faraday Soc. 25:19–28CrossRefGoogle Scholar
  13. 13.
    Feng Z.C., Leal L.G. (1997) Ann. Rev. Fluid Mech. 29:201–243CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Fried E., Gurtin M.E., Shen A.Q. (2006) Theory for solvent, momentum, and energy transfer between a surfactant solution and a vapor atmosphere. Phys. Rev. E 73:061601CrossRefADSGoogle Scholar
  15. 15.
    Godwin R.P., Chapyak E.J. (2000) Resource letter BD-1: bubble dynamics. Am. J. Phys. 68:211–222CrossRefADSGoogle Scholar
  16. 16.
    Gurtin M.E. (1995) The nature of configurational forces. Arch. Ration. Mech. Anal. 131:67–100zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gurtin M.E. (1999) Configurational Forces as Basic Concepts of Continuum Physics. Springer, BerlinGoogle Scholar
  18. 18.
    Leslie F.M. (1968) Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28:265–283zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Leslie F.M. (1979) Theory of flow phenomena for liquid crystals. Adv. Liquid Cryst. 4:1–81Google Scholar
  20. 20.
    Maier W., Saupe A. (1960) Eine enifache molekular-statische Theorie der nematischen kristallinflüssigen Phase, Teil II. Zeitschrift für Naturforschung 15a:287–292ADSGoogle Scholar
  21. 21.
    Oseen W.C. (1933) The theory of liquid crystals. Trans. Faraday Soc. 29:883–899CrossRefGoogle Scholar
  22. 22.
    Plesset M.S. (1949) The dynamics of cavitation bubbles. J. Appl. Mech. 16:277–282Google Scholar
  23. 23.
    Plesset M.S., Prosperetti A. (1977) Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9:145–185CrossRefADSGoogle Scholar
  24. 24.
    Prosperetti A. (2004) Bubbles. Phys. Fluids 16:1852–1865CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Poniewierski A. (2000) Shape of the nematic-isotropic interface in conditions of partial wetting. Liquid Cryst. 27:1369–1380CrossRefGoogle Scholar
  26. 26.
    Press M.J., Arrott A.S. (1973) Expansion coefficient of methoxybenzylidene butylaniline through the liquid–crystal phase transition. Phys. Rev. A 8:1459–1465CrossRefADSGoogle Scholar
  27. 27.
    Rayleigh L. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34:94–98Google Scholar
  28. 28.
    Rey A.D. (2000) Viscoelastic theory for nematic interfaces. Phys. Rev. E 61:1540–1549CrossRefADSGoogle Scholar
  29. 29.
    Rey A.D. (2000) Theory of interfacial dynamics of nematic polymers. Rheol. Acta 39:13–19CrossRefGoogle Scholar
  30. 30.
    Tintaru M., Moldovan R., Beica T., Frunza S. (2001) Surface tension of some liquid crystals in the cynaobiphenyl series. Liquid Cryst. 28:793–797CrossRefGoogle Scholar
  31. 31.
    Zocher H. (1933) The effect of a magnetic field on the nematic state. Trans. Faraday Soc. 29:945–957CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Structural EngineeringWashington University in St LouisSt LouisUSA

Personalised recommendations