Advertisement

Archive for Rational Mechanics and Analysis

, Volume 188, Issue 1, pp 93–116 | Cite as

Solutions to the Pólya–Szegö Conjecture and the Weak Eshelby Conjecture

  • Hyeonbae KangEmail author
  • Graeme W. Milton
Article

Abstract

Eshelby showed that if an inclusion is of elliptic or ellipsoidal shape then for any uniform elastic loading the field inside the inclusion is uniform. He then conjectured that the converse is true, that is, that if the field inside an inclusion is uniform for all uniform loadings, then the inclusion is of elliptic or ellipsoidal shape. We call this the weak Eshelby conjecture. In this paper we prove this conjecture in three dimensions. In two dimensions, a stronger conjecture, which we call the strong Eshelby conjecture, has been proved: if the field inside an inclusion is uniform for a single uniform loading, then the inclusion is of elliptic shape. We give an alternative proof of Eshelby’s conjecture in two dimensions using a hodographic transformation. As a consequence of the weak Eshelby’s conjecture, we prove in two and three dimensions a conjecture of Pólya and Szegö on the isoperimetric inequalities for the polarization tensors (PTs). The Pólya–Szegö conjecture asserts that the inclusion whose electrical PT has the minimal trace takes the shape of a disk or a ball.

Keywords

Milton Isoperimetric Inequality Polarization Tensor Lipschitz Boundary Boundary Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors L. (1979). Complex Analysis, 3rd edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  2. 2.
    Alessandrini G., Nesi V. (2001). Univalent σ-harmonic mappings. Arch. Ration. Mech. Anal. 158, 155–171zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ammari H., Capdeboscq Y., Kang H., Kim E., Lim M. (2006). Attainability by simply connected domains of optimal bounds for polarization tensors. Eur. J. Appl. Math. 17, 201–219zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ammari H., Kang H. (2003). High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM Math. J. Anal. 34, 1152–1166zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ammari, H., Kang, H.: Reconstruction of small inhomogeneities from boundary measurements. In: Lecture Notes in Math., vol. 1846. Springer, Berlin, 2004Google Scholar
  6. 6.
    Ammari, H., Kang, H.: Polarization and moment tensors with applications to inverse problems and effective medium theory. In: Applied Mathematical Sciences Series, vol. 162. Springer, Berlin, 2007Google Scholar
  7. 7.
    Ammari H., Kang H., Kim E., Lim M. (2005). Reconstruction of closely spaced small inclusions. SIAM J. Numer. Anal. 42, 2408–2428zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Asaro R.J., Barnett D.M. (1975). The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. J. Mech. Phys. Solids 23, 77–83zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Bauman P., Phillips D. (1994). Univalent minimizers of polyconvex functionals in two dimensions. Arch. Ration. Mech. Anal. 126, 161–181zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ben Amar M., Poiré E.C. (1999). Pushing a non-Newtonian fluid in a Hele-Shaw cell: from fingers to needle. Phys. Fluids 11, 1757–1767CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Capdeboscq, Y., Vogelius, M.S.: A review of some recent work on impedance imaging for inhomogeneities of low volume fraction. In: Partial differential equations and inverse problems, Contemp. Math., vol. 362, pp. 69–87. Am. Math. Soc., Providence, 2004Google Scholar
  12. 12.
    Cherkaev A.V., Grabovsky Y., Movchan A.B., Serkov S.K. (1998). The cavity of the optimal shape under the shear stresses. Int. J. Solids Struct. 35, 4391–4410zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dive P. (1931). Attraction des ellipsoides homogènes et réciproques d’un théorème de Newton. Bull. Soc. Math. Fr. 59, 128–140zbMATHMathSciNetGoogle Scholar
  14. 14.
    Duren P., Hengartner W. (1997). Harmonic mappings of multiply connected domains. Pac. J. Math. 180, 201–220MathSciNetCrossRefGoogle Scholar
  15. 15.
    Escauriaza L., Fabes E.B., Verchota G. (1992). On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115, 1069–1076zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Escauriaza L., Seo J.K. (1993). Regularity properties of solutions to transmission problems. Trans. Am. Math. Soc. 338, 405–430zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eshelby J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396zbMATHADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Eshelby, J.D., Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, vol. II (Eds. Sneddon I.N. and Hill R.) North-Holland, Amsterdam, 87–140, 1961Google Scholar
  19. 19.
    Folland G.B. (1976). Introduction to Partial Differential Equations. Princeton University Press, PrincetonzbMATHGoogle Scholar
  20. 20.
    Franciosi P. (2005). On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. Int. J. Solids Struct. 42, 3509–3531zbMATHCrossRefGoogle Scholar
  21. 21.
    Friedman A., Vogelius M. (1989). Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326zbMATHMathSciNetGoogle Scholar
  22. 22.
    Grabovsky Y., Kohn R. (1995). Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II. The Vigdergauz microstructure. J. Mech. Phys. Solids 43: 949–972zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Grabovsky Y. (1996). Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method. Proc. R. Soc. Lond. A 452, 919–944zbMATHADSMathSciNetGoogle Scholar
  24. 24.
    Hashin Z., Shtrikman S. (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140CrossRefMathSciNetzbMATHADSGoogle Scholar
  25. 25.
    Isakov V., Powell J. (1990). On the inverse conductivity problem with one measurement. Inverse Probl. 6, 311–318zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Kang, H., Kim, E., Milton, G.W.: Inclusion pairs satisfying Eshelby’s uniformity property (submitted)Google Scholar
  27. 27.
    Kang, H., Milton, G.W.: On conjectures of Polya-Szego and Eshelby. In: Contemporary Math., vol. 408, pp. 75–80. Am. Math. Soc., Providence, 2006Google Scholar
  28. 28.
    Kang, H., Seo, J.K.: Recent progress in the inverse conductivity problem with single measurement. In: Inverse Problems and Related Fields, pp. 69–80. CRC, Boca Raton, 2000Google Scholar
  29. 29.
    Kawashita M., Nozaki H. (2001). Eshelby tensor of a polygonal inclusion and its special properties. J. Elast. 64, 71–84zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kohn, R.V., Milton, G.W.: On bounding the effective conductivity of anisotropic composites. Homogenization and Effective Moduli of Materials and Media, IMA Volumes in Mathematics and its Applications, vol. 1 (Eds. Ericksen J.L., Kinderlehrer D., Kohn R.V. and Lions J.L.) Springer, Berlin, 97–125, 1986Google Scholar
  31. 31.
    Lipton R. (1993). Inequalities for electric and elastic polarization tensors with applications to random composites. J. Mech. Phys. Solids 41, 809–833zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Lubarda V.A., Markenscoff X. (1998). On the absence of Eshelby property for non-ellipsoidal inclusions. Int. J. Solids Struct. 35, 3405–3411zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lurie, K.A., Cherkaev, A.V.: G-closure of a set of anisotropic conducting media in the case of two-dimensions. Dokl. Akad. Nauk SSSR 259, 328–331 (1981), translated in Soviet Phys. Dokl. 26, 657–659 (1981)Google Scholar
  34. 34.
    Lurie K.A., Cherkaev A.V. (1986). Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 104, 21–38MathSciNetzbMATHGoogle Scholar
  35. 35.
    Markenscoff X. (1997). On the shape of Eshelby inclusions. J. Elast. 49, 163–166CrossRefMathSciNetGoogle Scholar
  36. 36.
    Markenscoff X. (1998). Inclusions with constant eigenstress. J. Mech. Phys. Solids 46, 2297–2301zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Milton G.W., McPhedran R.C., McKenzie D.R. (1981). Transport properties of arrays of intersecting cylinders. Appl. Phys. 25, 23–30CrossRefADSGoogle Scholar
  38. 38.
    Milton G.W., Kohn R.V. (1988). Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36, 597–629zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Milton, G.W.: The theory of composites. In: Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, London, 2002Google Scholar
  40. 40.
    Mindlin R.D., Cooper H.J. (1950). Thermoelastic stress around a cylindrical inclusion of elliptic cross-section. ASME J. Appl. Mech. 17, 265–268zbMATHMathSciNetGoogle Scholar
  41. 41.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. English translation, Noordhoff International Publishing, Leyden, 1977Google Scholar
  42. 42.
    Mura T. (1997). The determination of the elastic field of a polygonal star shaped inclusion. Mech. Res. Commun. 24, 473–482zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Mura T.(2000). Some new problems in the micromechanics. Mater. Sci. Eng. A285, 224–228CrossRefGoogle Scholar
  44. 44.
    Murat, F., Tartar, L.: Calcul des variations et homogénísation. In: Les méthodes de l’homogénéisation: théorie et applications en physique, vol. 57, pp. 319–370. Collection de la Direction des études et recherches d’Électricité de France, Eyrolles, Paris, 1985. [Translated in Topics in the Mathematical Modeling of Composite Materials, Vol. 31 (Eds. Cherkaev, A., and Kohn, R.) Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, pp. 139–173. ISBN 0-8176-3662-5.]Google Scholar
  45. 45.
    Nikliborc W.(1932). Eine Bemerkung über die Volumpotentiale. Math. Zeit. 35, 625–631zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Nozaki H., Taya M.(1997). Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME J. Appl. Mech. 64, 495–502zbMATHGoogle Scholar
  47. 47.
    Nozaki H., Taya M.(2001). Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. ASME J. Appl. Mech. 68, 441–452zbMATHCrossRefGoogle Scholar
  48. 48.
    Payne L. (1967). Isoperimetric inequalities and their applications. SIAM Rev. 9, 453–488zbMATHCrossRefMathSciNetADSGoogle Scholar
  49. 49.
    Payne L., Philippin G. (1986). Isoperimetric inequalities for polarization and virtual mass. J. Anal. Math. 47, 255–267zbMATHMathSciNetGoogle Scholar
  50. 50.
    Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. In: Annals of Mathematical Studies, vol. 27. Princeton University Press, Princeton, 1951Google Scholar
  51. 51.
    Pommerenke Ch. (1992). Boundary Behaviour of Conformal Maps. Spinger, BerlinzbMATHGoogle Scholar
  52. 52.
    Robinson K. (1951). Elastic energy of an ellipsoidal inclusion in an infinite solid. J. Appl. Phys. 22, 1045–1054zbMATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Rodin G.J. (1996). Eshelby’s inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids 44, 1977–1995CrossRefADSGoogle Scholar
  54. 54.
    Ru C.-Q., Schiavone P. (1996). On the elliptic inclusion in anti-plane shear. Math. Mech. Solids 1, 327–333zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Saffman P.G. (1986). Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 73–94zbMATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Saffman P.G., Taylor G. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329zbMATHADSMathSciNetGoogle Scholar
  57. 57.
    Schiffer M., Szegö G. (1949). Virtual mass and polarization. Trans. Am. Math. Soc. 67, 130–205zbMATHCrossRefGoogle Scholar
  58. 58.
    Sendeckyj G.P. (1970). Elastic inclusion problems in plane elastostatics. Int. J. Solids Struct. 6, 1535–1543zbMATHCrossRefGoogle Scholar
  59. 59.
    Verchota G.C. (1984). Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Vigdergauz S.B. (1986). Effective elastic parameters of a plate with a regular system of equal-strength holes. Inzhenernyi Zhurnal. Mekhnika Tverdogo Tela 21, 165–169Google Scholar
  61. 61.
    Vigdergauz S.B. (1994). Two dimensional grained composites of extreme rigidity. J. Appl. Mech. 61, 390–394zbMATHGoogle Scholar
  62. 62.
    Willis, J.R.: Asymmetric problems of elasticity. In: Adams Prize Essay. University of Cambridge, CambridgeGoogle Scholar
  63. 63.
    Zheng Q.-S., Zhao Z.-H., Du D.-X. (2006). Irreducible structure, symmetry and average of Eshelby’s tensor fields in isotropic elasticity. J. Mech. Phys. Solids 54, 368–383zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Mathematical Sciences and RIMSeoul National UniversitySeoulSouth Korea
  2. 2.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations