Advertisement

Archive for Rational Mechanics and Analysis

, Volume 187, Issue 1, pp 49–89 | Cite as

Homogenization of First-Order Equations with \((u/\varepsilon)\) -Periodic Hamiltonians. Part I: Local Equations

  • Cyril ImbertEmail author
  • Régis Monneau
Article

Abstract

In this paper, we present a result of homogenization of first-order Hamilton–Jacobi equations with (\(u/\varepsilon\))-periodic Hamiltonians. On the one hand, under a coercivity assumption on the Hamiltonian (and some natural regularity assumptions), we prove an ergodicity property of this equation and the existence of nonperiodic approximate correctors. On the other hand, the proof of the convergence of the solution, usually based on the introduction of a perturbed test function in the spirit of Evans’s work, uses here a twisted perturbed test function for a higher-dimensional problem.

Keywords

Viscosity Solution Comparison Principle Jacobi Equation Strong Maximum Principle Coercivity Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, O., Bardi, M.: Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40(4):1159–1188 (electronic) (2001/02)Google Scholar
  2. 2.
    Alvarez O., Bardi M. (2003) Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170(1): 17–61zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bardi M., Capuzzo-Dolcetta I. (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, With appendices by Maurizio Falcone and Pierpaolo SoraviaGoogle Scholar
  4. 4.
    Barles, G. Some homogenization results for non-coercive Hamilton–Jacobi equations. Technical report, HAL 00071284. Laboratoire de Mathématiques de Physique Théorique (to appear), 2006Google Scholar
  5. 5.
    Barles G., Souganidis P.E. (2001) Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal. 32(6): 1311–1323, (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barles G., Souganidis P.E. (2000) On the large time behavior of solutions of Hamilton–Jacobi equations. SIAM J. Math. Anal. 31(4): 925–939, (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barles G. (1994) Solutions de viscosité des équations de Hamilton–Jacobi. Volume 17 of Mathématiques & Applications (Berlin) (Mathematics & Applications). Springer, ParisGoogle Scholar
  8. 8.
    Barles G., Roquejoffre J.-M. (2003) Large time behaviour of fronts governed by eikonal equations. Interf. Free Bound. 5(1): 83–102zbMATHMathSciNetGoogle Scholar
  9. 9.
    Barles G., Souganidis P.E. (2000) Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations. C. R. Acad. Sci. Paris Sér. I Math. 330(11): 963–968zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bensoussan A., Lions J.-L., Papanicolaou G. (1978) Asymptotic Analysis for Periodic Structures, volume 5 of Studies in Mathematics and its Applications. North-Holland, AmsterdamGoogle Scholar
  11. 11.
    Berestycki H., Nirenberg L. (1991) On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22(1): 1–37zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Berestycki H., Hamel F. (2002) Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8): 949–1032zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Boccardo, L., Murat, F. Homogeneisation de problemes quasi-lineaires. Proceedings “Studio di problemi-limite dell’analisi funzionale”, Bressanone (7–9 septembre 1981), Pitagora editrice Bologna., pp 13–51, 1981Google Scholar
  14. 14.
    Boccardo, L., Murat, F. Remarques sur l’homogénéisation de certains problèmes quasi-linéaires. Portugal Math. 41(1–4), 535–562 (1984), (1982)Google Scholar
  15. 15.
    Caffarelli L.A. (2004) Some Liouville theorems for PDE problems in periodic media. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl. 14(3): 247–256, 2003. Renato Caccioppoli and modern analysisMathSciNetGoogle Scholar
  16. 16.
    Caffarelli L.A., Souganidis P.E., Wang L. (2005) Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3): 319–361zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Crandall M.G., Ishii H., Lions P.-L. (1992) User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1): 1–67zbMATHMathSciNetGoogle Scholar
  18. 18.
    Crandall M.G., Ishii H., Lions P.-L. (1992) User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1): 1–67zbMATHMathSciNetGoogle Scholar
  19. 19.
    Droniou, J., Imbert, C. Fractal first order partial differential equations. Archive for Rational Mechanics and Analysis (to appear), 2005Google Scholar
  20. 20.
    Evans L.C. (1989) The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinbur. Sect. A 111(3–4): 359–375Google Scholar
  21. 21.
    Evans L.C. (1992) Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinbur. Sect. A 120(3–4): 245–265Google Scholar
  22. 22.
    Fathi A. (1998) Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327(3): 267–270zbMATHMathSciNetGoogle Scholar
  23. 23.
    Imbert C. (2005) A non-local regularization of first order Hamilton–jacobi equations. J. Differ. Equ. 211(1): 214–246CrossRefMathSciNetGoogle Scholar
  24. 24.
    Imbert, C., Monneau, R., Rouy, E. Homogeneisation of first order equations with \((u/\varepsilon)\) -periodic hamiltonians. Part II: application to dislocation dynamics (in preparation)Google Scholar
  25. 25.
    Ishii, H. Homogenization of the Cauchy problem for Hamilton–Jacobi equations. In: Stochastic analysis, control, optimization and applications, Systems Control Found. Appl., pp. 305–324. Birkhäuser Boston, Boston, MA, 1999Google Scholar
  26. 26.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural′ceva, N.N. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, RI, 1967Google Scholar
  27. 27.
    Lions P.-L. (1982) Generalized Solutions of Hamilton–Jacobi Equations, volume 69 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MAGoogle Scholar
  28. 28.
    Lions, P.-L., George, C. Papanicolaou, and Srinivasa R. S. Varadhan. Homogeneization of Hamilton–Jacobi equations. unpublished, 1986Google Scholar
  29. 29.
    Lions P.-L., Souganidis P.E. (2005) Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media. Comm. Partial Differ. Equ. 30(1–3): 335–375zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Müller S. (1987) Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99(3): 189–212zbMATHCrossRefGoogle Scholar
  31. 31.
    Murat, F., Tartar, L. H-convergence. In: Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl., pp. 21–43, Boston, MA. Birkhäuser Boston, 1997Google Scholar
  32. 32.
    Piccinini, L. G-convergence for ordinary differential equations. In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp 257–279, Bologna, Pitagora, 1979Google Scholar
  33. 33.
    Piccinini L.C. (1978) Homogeneization problems for ordinary differential equations. Rend. Circ. Mat. Palermo (2) 27(1): 95–112zbMATHMathSciNetGoogle Scholar
  34. 34.
    Roquejoffre J.-M. (1998) Comportement asymptotique des solutions d’équations de Hamilton–Jacobi monodimensionnelles. C. R. Acad. Sci. Paris Sér. I Math. 326(2): 185–189zbMATHMathSciNetGoogle Scholar
  35. 35.
    Souganidis P.E. (1999) Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptot. Anal. 20(1): 1–11zbMATHMathSciNetGoogle Scholar
  36. 36.
    Tartar, L. Nonlocal effects induced by homogenization. In: Partial differential equations and the calculus of variations, Vol. II, volume 2 of Progr. Nonlinear Differential Equations Appl., pp. 925–938. Birkhäuser Boston, Boston, MA, 1989Google Scholar
  37. 37.
    Tartar L. (1998) Homogenization and hyperbolicity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(3–4): 785–805, Dedicated to Ennio De Giorgi, 1997MathSciNetGoogle Scholar
  38. 38.
    Tassa T. (1997) Homogenization of two-dimensional linear flows with integral invariance. SIAM J. Appl. Math. 57(5): 1390–1405zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Polytech’Montpellier & Institut de mathématiques et de modélisation de MontpellierUMR CNRS 5149, Université Montpellier IIMontpellier cedex 5France
  2. 2.CEREMADE, Université Paris-DauphineParis cedex 16France
  3. 3.CERMICS, Université Paris-EstMarne la Vallée Cedex 2France

Personalised recommendations