Evans Functions, Jost Functions, and Fredholm Determinants
Article
First Online:
- 193 Downloads
- 16 Citations
Abstract
The principal results of this paper consist of an intrinsic definition of the Evans function in terms of newly introduced generalized matrix-valued Jost solutions for general first-order matrix-valued differential equations on the real line, and a proof of the fact that the Evans function, a finite-dimensional determinant by construction, coincides with a modified Fredholm determinant associated with a Birman–Schwinger-type integral operator up to an explicitly computable nonvanishing factor.
Keywords
Lyapunov Exponent Evans Function Integral Kernel Volterra Integral Equation Exponential Dichotomy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Alexander J., Gardner R., Jones C. (1990). A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410: 167–212zbMATHMathSciNetGoogle Scholar
- Ben-Artzi, A., Gohberg, I.: Dichotomy of systems and invertibility of linear ordinary differential operators. In: Time-Variant Systems and Interpolation, I. Gohberg (ed.), Operator Theory: Adv. Appl., Vol. 56, Birkhäuser, Basel, pp. 90–119 (1992)Google Scholar
- Bridges T.J., Derks G. (2001). The symplectic Evans matrix, and the instability of solitary waves and fronts. Arch. Ration. Mech. Anal. 156: 1–87zbMATHCrossRefMathSciNetGoogle Scholar
- Chadan K., Sabatier P.C. (1989). Inverse Problems in Quantum Scattering Theory, second edn. Springer, New YorkGoogle Scholar
- Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surv. Monogr. 70, Am. Math. Soc., Providence, RI, 1999Google Scholar
- Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics 629. Springer, Berlin, 1978Google Scholar
- Cramer D., Latushkin Y. (2007). Fredholm determinants and the Evans function for difference equations. Banach Center Publ. 75: 111–135MathSciNetGoogle Scholar
- Daleckii, Ju., Krein, M.: Stability of Solutions of Differential Equations in Banach Space. Am. Math. Soc., Providence, RI, 1974Google Scholar
- Deng J., Nii S. (2006). Infinite-dimensional Evans function theorey for elliptic eigenvalue problems in a channel. J. Differ. Equ. 225: 57–89zbMATHCrossRefMathSciNetGoogle Scholar
- Dunford N., Schwartz J.T. (1988). Linear Operators Part. II: Spectral Theory. Interscience, New YorkGoogle Scholar
- Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem. Oxford University Press, Oxford, 1989Google Scholar
- Engel K.J., Nagel R. (1999). One-Parameter Semigroups for Linear Evolution Equations. Springer, HeidelbergGoogle Scholar
- Evans J.W. (1972). Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J. 21: 877–885zbMATHCrossRefADSGoogle Scholar
- Evans, J.W.: Nerve axon equations. II. Stability at rest. Indiana Univ. Math. J. 22, 75–90 (1972). Errata: Indiana Univ. Math. J. 25, 301 (1976)Google Scholar
- Evans, J.W.: Nerve axon equations. III: Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972). Errata: Indiana Univ. Math. J. 25, 301 (1976)Google Scholar
- Evans J.W. (1975). Nerve axon equations. IV. The stable and unstable impulse. Indiana Univ. Math. J. 24: 1169–1190zbMATHCrossRefGoogle Scholar
- Gardner R.A., Zumbrun K. (1998). The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51: 797–855CrossRefMathSciNetGoogle Scholar
- Gesztesy F., Holden H. (1987). A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 123: 181–198zbMATHCrossRefMathSciNetGoogle Scholar
- Gesztesy F., Latushkin Y., Makarov K.A. (2004). Evans functions and modified Fredholm determinants. Report no. 36/2004, Oberwolfach Reports 1: 1946–1948Google Scholar
- Gesztesy F., Latushkin Y., Mitrea M., Zinchenko M. (2005). Non-self-adjoint operators, infinite determinants, and some applications. Russian J. Math. Phys. 12: 443–471zbMATHMathSciNetGoogle Scholar
- Gesztesy, F., Makarov, K.A.: (Modified) Fredholm Determinants for Operators with Matrix-Valued Semi-Separable Integral Kernels Revisited. Integral Eq. Oper. Theory 47, 457–497 (2003). (See also Erratum 48, 425–426 (2004) and the corrected electronic-only version in 48, 561–602 (2004))Google Scholar
- Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators. Oper. Theory: Adv. Appl., Vol. 116, Birkhäuser, Basel, 2000Google Scholar
- Gohberg, I., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, Vol. 18, Am. Math. Soc., Providence, RI, 1969Google Scholar
- Hartman, P.: Ordinary Differential Equations. Corr. reprint of the 2nd edn. SIAM, Philadelphia, PA, 2002Google Scholar
- Jost R., Pais A. (1951). On the scattering of a particle by a static potential. Phys. Rev. 82: 840–851zbMATHCrossRefADSMathSciNetGoogle Scholar
- Kapitula T. (2005). Stability analysis of pulses via the Evans function: dissipative systems. Lect. Notes Phys. 661: 407–427ADSMathSciNetCrossRefGoogle Scholar
- Kapitula T., Sandstede B. (2002). Edge bifurcations for near integrable systems via Evans function techniques. SIAM J. Math. Anal. 33: 1117–1143zbMATHCrossRefMathSciNetGoogle Scholar
- Kapitula T., Sandstede B. (2004). Eigenvalues and resonances using the Evans function. Discrete Contin. Dyn. Syst. 10: 857–869zbMATHMathSciNetGoogle Scholar
- Latushkin Y., Tomilov Y. (2005). Fredholm differential operators with unbounded coefficients. J. Differ. Equ. 208: 388–429zbMATHCrossRefMathSciNetGoogle Scholar
- Newton R.G. (1972). Relation between the three-dimensional Fredholm determinant and the Jost function. J. Math. Phys. 13: 880–883CrossRefADSGoogle Scholar
- Newton R.G. (1980). Inverse scattering. I. One dimension. J. Math. Phys. 21: 493–505zbMATHCrossRefADSMathSciNetGoogle Scholar
- Newton R.G. (2002). Scattering Theory of Waves and Particles. 2nd edn. Dover, New YorkGoogle Scholar
- Palmer K. (1984). Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55: 225–256zbMATHCrossRefMathSciNetGoogle Scholar
- Palmer K. (1988). Exponential dichotomy and Fredholm operators. Proc. Am. Math. Soc. 104: 149–156zbMATHCrossRefMathSciNetGoogle Scholar
- Pego, R.L., Weinstein M.I. (1992). Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A 340: 47–94zbMATHCrossRefADSGoogle Scholar
- Pego, R.L., Weinstein, M.I.: Evans’ function, Melnikov’s integral, and solitary wave instabilities. In: Differential Equations with Applications to Mathematical Physics. (Eds. W.F. Ames, E.M. Harrell II, J.V. Herod) Academic, Boston, pp. 273–286, 1993Google Scholar
- Peterhof D., Sandstede B., Scheel A. (1997). Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders. J. Differ. Equ. 140, 266–308zbMATHCrossRefMathSciNetGoogle Scholar
- Plaza R., Zumbrun K. (2004). An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete Contin. Dyn. Syst. 10: 885–924zbMATHMathSciNetGoogle Scholar
- Reed M., Simon B. (1978). Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic, New YorkzbMATHGoogle Scholar
- Sacker R. (1979). The splitting index for linear differential systems. J. Differ. Equ. 33, 368–405zbMATHCrossRefMathSciNetGoogle Scholar
- Sandstede, B.: Stability of travelling waves. In: Handbook of dynamical systems, Vol. 2. (Eds. B. Hasselblatt, A. Katok) North-Holland, Elsevier, Amsterdam, pp. 983–1055, 2002Google Scholar
- Sandstede B., Scheel A. (2004). Evans function and blow-up methods in critical eigenvalue problems. Discrete Contin. Dyn. Syst. 10, 941–964zbMATHMathSciNetCrossRefGoogle Scholar
- Sattinger D.H. (1976). On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355zbMATHCrossRefMathSciNetGoogle Scholar
- Simon B. (1971). Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, PrincetonzbMATHGoogle Scholar
- Simon, B.: On the number of bound states of two body Schrödinger operators—a review. In: Studies in Mathematical Physics. (Eds. E.H. Lieb, B. Simon, A.S. Wightman) Princeton University Press, Princeton, pp. 305–326, 1976Google Scholar
- Simon B. (1977). Notes on infinite determinants of Hilbert space operators. Adv. Math. 24: 244–273zbMATHGoogle Scholar
- Simon, B.: Trace Ideals and their Applications. London Math. Soc. Lect. Notes Ser. 35, Cambridge University Press, Cambridge, 1979Google Scholar
- Wasow W. (1987). Asymptotic expansions for ordinary differential equations. Dover, New YorkzbMATHGoogle Scholar
- Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves. (Eds. T.-P. Liu, H. Freistühler, A. Szepessy) Progress Nonlinear Diff. Eqs. Appls., 47, Birkhäuser, Boston, pp. 307–516, 2001Google Scholar
- Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 937–992 (1998). Errata: Indiana Univ. Math. J. 51, 1017–1021 (2002)Google Scholar
Copyright information
© Springer-Verlag 2007