Advertisement

Archive for Rational Mechanics and Analysis

, Volume 186, Issue 3, pp 361–421 | Cite as

Evans Functions, Jost Functions, and Fredholm Determinants

  • Fritz GesztesyEmail author
  • Yuri Latushkin
  • Konstantin A. Makarov
Article

Abstract

The principal results of this paper consist of an intrinsic definition of the Evans function in terms of newly introduced generalized matrix-valued Jost solutions for general first-order matrix-valued differential equations on the real line, and a proof of the fact that the Evans function, a finite-dimensional determinant by construction, coincides with a modified Fredholm determinant associated with a Birman–Schwinger-type integral operator up to an explicitly computable nonvanishing factor.

Keywords

Lyapunov Exponent Evans Function Integral Kernel Volterra Integral Equation Exponential Dichotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander J., Gardner R., Jones C. (1990). A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410: 167–212zbMATHMathSciNetGoogle Scholar
  2. Ben-Artzi, A., Gohberg, I.: Dichotomy of systems and invertibility of linear ordinary differential operators. In: Time-Variant Systems and Interpolation, I. Gohberg (ed.), Operator Theory: Adv. Appl., Vol. 56, Birkhäuser, Basel, pp. 90–119 (1992)Google Scholar
  3. Bridges T.J., Derks G. (2001). The symplectic Evans matrix, and the instability of solitary waves and fronts. Arch. Ration. Mech. Anal. 156: 1–87zbMATHCrossRefMathSciNetGoogle Scholar
  4. Chadan K., Sabatier P.C. (1989). Inverse Problems in Quantum Scattering Theory, second edn. Springer, New YorkGoogle Scholar
  5. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surv. Monogr. 70, Am. Math. Soc., Providence, RI, 1999Google Scholar
  6. Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics 629. Springer, Berlin, 1978Google Scholar
  7. Cramer D., Latushkin Y. (2007). Fredholm determinants and the Evans function for difference equations. Banach Center Publ. 75: 111–135MathSciNetGoogle Scholar
  8. Daleckii, Ju., Krein, M.: Stability of Solutions of Differential Equations in Banach Space. Am. Math. Soc., Providence, RI, 1974Google Scholar
  9. Deng J., Nii S. (2006). Infinite-dimensional Evans function theorey for elliptic eigenvalue problems in a channel. J. Differ. Equ. 225: 57–89zbMATHCrossRefMathSciNetGoogle Scholar
  10. Dunford N., Schwartz J.T. (1988). Linear Operators Part. II: Spectral Theory. Interscience, New YorkGoogle Scholar
  11. Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem. Oxford University Press, Oxford, 1989Google Scholar
  12. Engel K.J., Nagel R. (1999). One-Parameter Semigroups for Linear Evolution Equations. Springer, HeidelbergGoogle Scholar
  13. Evans J.W. (1972). Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J. 21: 877–885zbMATHCrossRefADSGoogle Scholar
  14. Evans, J.W.: Nerve axon equations. II. Stability at rest. Indiana Univ. Math. J. 22, 75–90 (1972). Errata: Indiana Univ. Math. J. 25, 301 (1976)Google Scholar
  15. Evans, J.W.: Nerve axon equations. III: Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972). Errata: Indiana Univ. Math. J. 25, 301 (1976)Google Scholar
  16. Evans J.W. (1975). Nerve axon equations. IV. The stable and unstable impulse. Indiana Univ. Math. J. 24: 1169–1190zbMATHCrossRefGoogle Scholar
  17. Gardner R.A., Zumbrun K. (1998). The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51: 797–855CrossRefMathSciNetGoogle Scholar
  18. Gesztesy F., Holden H. (1987). A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 123: 181–198zbMATHCrossRefMathSciNetGoogle Scholar
  19. Gesztesy F., Latushkin Y., Makarov K.A. (2004). Evans functions and modified Fredholm determinants. Report no. 36/2004, Oberwolfach Reports 1: 1946–1948Google Scholar
  20. Gesztesy F., Latushkin Y., Mitrea M., Zinchenko M. (2005). Non-self-adjoint operators, infinite determinants, and some applications. Russian J. Math. Phys. 12: 443–471zbMATHMathSciNetGoogle Scholar
  21. Gesztesy, F., Makarov, K.A.: (Modified) Fredholm Determinants for Operators with Matrix-Valued Semi-Separable Integral Kernels Revisited. Integral Eq. Oper. Theory 47, 457–497 (2003). (See also Erratum 48, 425–426 (2004) and the corrected electronic-only version in 48, 561–602 (2004))Google Scholar
  22. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators. Oper. Theory: Adv. Appl., Vol. 116, Birkhäuser, Basel, 2000Google Scholar
  23. Gohberg, I., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, Vol. 18, Am. Math. Soc., Providence, RI, 1969Google Scholar
  24. Hartman, P.: Ordinary Differential Equations. Corr. reprint of the 2nd edn. SIAM, Philadelphia, PA, 2002Google Scholar
  25. Jost R., Pais A. (1951). On the scattering of a particle by a static potential. Phys. Rev. 82: 840–851zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. Kapitula T. (2005). Stability analysis of pulses via the Evans function: dissipative systems. Lect. Notes Phys. 661: 407–427ADSMathSciNetCrossRefGoogle Scholar
  27. Kapitula T., Sandstede B. (2002). Edge bifurcations for near integrable systems via Evans function techniques. SIAM J. Math. Anal. 33: 1117–1143zbMATHCrossRefMathSciNetGoogle Scholar
  28. Kapitula T., Sandstede B. (2004). Eigenvalues and resonances using the Evans function. Discrete Contin. Dyn. Syst. 10: 857–869zbMATHMathSciNetGoogle Scholar
  29. Latushkin Y., Tomilov Y. (2005). Fredholm differential operators with unbounded coefficients. J. Differ. Equ. 208: 388–429zbMATHCrossRefMathSciNetGoogle Scholar
  30. Newton R.G. (1972). Relation between the three-dimensional Fredholm determinant and the Jost function. J. Math. Phys. 13: 880–883CrossRefADSGoogle Scholar
  31. Newton R.G. (1980). Inverse scattering. I. One dimension. J. Math. Phys. 21: 493–505zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. Newton R.G. (2002). Scattering Theory of Waves and Particles. 2nd edn. Dover, New YorkGoogle Scholar
  33. Palmer K. (1984). Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55: 225–256zbMATHCrossRefMathSciNetGoogle Scholar
  34. Palmer K. (1988). Exponential dichotomy and Fredholm operators. Proc. Am. Math. Soc. 104: 149–156zbMATHCrossRefMathSciNetGoogle Scholar
  35. Pego, R.L., Weinstein M.I. (1992). Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A 340: 47–94zbMATHCrossRefADSGoogle Scholar
  36. Pego, R.L., Weinstein, M.I.: Evans’ function, Melnikov’s integral, and solitary wave instabilities. In: Differential Equations with Applications to Mathematical Physics. (Eds. W.F. Ames, E.M. Harrell II, J.V. Herod) Academic, Boston, pp. 273–286, 1993Google Scholar
  37. Peterhof D., Sandstede B., Scheel A. (1997). Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders. J. Differ. Equ. 140, 266–308zbMATHCrossRefMathSciNetGoogle Scholar
  38. Plaza R., Zumbrun K. (2004). An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete Contin. Dyn. Syst. 10: 885–924zbMATHMathSciNetGoogle Scholar
  39. Reed M., Simon B. (1978). Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic, New YorkzbMATHGoogle Scholar
  40. Sacker R. (1979). The splitting index for linear differential systems. J. Differ. Equ. 33, 368–405zbMATHCrossRefMathSciNetGoogle Scholar
  41. Sandstede, B.: Stability of travelling waves. In: Handbook of dynamical systems, Vol. 2. (Eds. B. Hasselblatt, A. Katok) North-Holland, Elsevier, Amsterdam, pp. 983–1055, 2002Google Scholar
  42. Sandstede B., Scheel A. (2004). Evans function and blow-up methods in critical eigenvalue problems. Discrete Contin. Dyn. Syst. 10, 941–964zbMATHMathSciNetCrossRefGoogle Scholar
  43. Sattinger D.H. (1976). On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355zbMATHCrossRefMathSciNetGoogle Scholar
  44. Simon B. (1971). Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, PrincetonzbMATHGoogle Scholar
  45. Simon, B.: On the number of bound states of two body Schrödinger operators—a review. In: Studies in Mathematical Physics. (Eds. E.H. Lieb, B. Simon, A.S. Wightman) Princeton University Press, Princeton, pp. 305–326, 1976Google Scholar
  46. Simon B. (1977). Notes on infinite determinants of Hilbert space operators. Adv. Math. 24: 244–273zbMATHGoogle Scholar
  47. Simon, B.: Trace Ideals and their Applications. London Math. Soc. Lect. Notes Ser. 35, Cambridge University Press, Cambridge, 1979Google Scholar
  48. Wasow W. (1987). Asymptotic expansions for ordinary differential equations. Dover, New YorkzbMATHGoogle Scholar
  49. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves. (Eds. T.-P. Liu, H. Freistühler, A. Szepessy) Progress Nonlinear Diff. Eqs. Appls., 47, Birkhäuser, Boston, pp. 307–516, 2001Google Scholar
  50. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 937–992 (1998). Errata: Indiana Univ. Math. J. 51, 1017–1021 (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fritz Gesztesy
    • 1
    Email author
  • Yuri Latushkin
    • 1
  • Konstantin A. Makarov
    • 1
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations