Archive for Rational Mechanics and Analysis

, Volume 187, Issue 2, pp 185–220 | Cite as

A Model for the Formation and Evolution of Traffic Jams

  • F. BerthelinEmail author
  • P. Degond
  • M. Delitala
  • M. Rascle


In this paper, we establish and analyze a traffic flow model which describes the formation and dynamics of traffic jams. It consists of a pressureless gas dynamics system under a maximal constraint on the density and is derived through a singular limit of the Aw-Rascle model. From this analysis, we deduce the particular dynamical behavior of clusters (or traffic jams), defined as intervals where the density limit is reached. An existence result for a generic class of initial data is proved by means of an approximation of the solution by a sequence of clusters. Finally, numerical simulations are produced.


Intermediate State Riemann Problem Contact Discontinuity Cluster Dynamic Simple Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aw A., Klar A., Materne A., Rascle M. (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63:259–278zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aw A., Rascle M. (2000) Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60:916–938zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berthelin F. (2002) Existence and weak stability for a two-phase model with unilateral constraint. Math. Models Methods Appl. Sci. 12:249–272zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berthelin F., Bouchut F. (2003) Weak solutions for a hyperbolic systems with unilateral constraint and mass loss. Ann. Inst. H. Poincare Anal. Non Linéaire 20:975–997zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouchut, F.: On zero pressure gas dynamics. In: (Ed. Perthame, B.), Advances in kinetic theory and computing, World Scientific (1994)Google Scholar
  6. 6.
    Bouchut F., Brenier Y., Cortes J., Ripoll J.F. (2000) A hierachy of models for two-phase flows. J. Nonlinear Sci. 10:639–660zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bouchut F., James F. (1999) Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. Partial Differential Equations 24:2173–2189zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brenier Y., Grenier E. (1998) Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35:2317–2328zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Colombo R.M. (2002) A 2 × 2 hyperbolic traffic flow model Traffic Hav modelling and simulation. Math. Comp. Modelling 35:683–688zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dafermos, C.: Hyperbolic conservation laws in continuum physics. Springer-Verlag, 1999Google Scholar
  11. 11.
    Daganzo C. (1995) Requiem for second order fluid approximations of traffic flow. Transp. Res. B 29B:277–286CrossRefGoogle Scholar
  12. 12.
    E. W., Rykov, Y.G., Sinai, Y.G. (1996) Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177, 349–380Google Scholar
  13. 13.
    Gazis D.C., Herman R., Rothery R. (1961) Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9:545–567zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Grenier E. (1995) Existence globale pour le système des gaz sans pression. C. R. Math. Acad. Sci. Paris 321:171–174zbMATHMathSciNetGoogle Scholar
  15. 15.
    Klar, A., Wegener, R.: Traffic flow: models and numerics. In: Modeling and Computational Methods for Kinetic Equations, Birkhäuser, Boston, 219–259 (2004)Google Scholar
  16. 16.
    Klar A., Wegener R. (1997) Enskog-like kinetic models for vehicular traffic. J. Stat. Phys. 87:91–114zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Lighthill, M.J., Whitham, J.B.: On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Sec A 229, Math. Phys. Eng. Sci. 281–345 (1955)Google Scholar
  18. 18.
    Nagel K., Schreckenberg M. (1992) A cellular automaton model for freeway traffic. J. Physique 2:2221–2229ADSGoogle Scholar
  19. 19.
    Nelson P. (1995) A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions. Transport. Theory Statist. Phys. 24:383–409zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Paveri-Fontana S.L. (1975) On Boltzmann-like treatments for traffic flow. Transportation Res. 9:225–235CrossRefGoogle Scholar
  21. 21.
    Payne, H.J.: Models of Freeway Traffic and Control. In: Mathematical Models of Public Systems, Simulation Council Proc. 1, (1971)Google Scholar
  22. 22.
    Payne H.J. (1979) FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record 722:68–75Google Scholar
  23. 23.
    Prigogine I., Herman R (1971) Kinetic theory of vehicular traffic. American Elsevier Publishing Co, New-YorkzbMATHGoogle Scholar
  24. 24.
    Serre, D.: Systems of conservation laws 1 & 2. Cambridge University Press, 1999 and 2000Google Scholar
  25. 25.
    Smoller, J.: Shock waves and reaction-diffusion equations. Springer-Verlag, 1983Google Scholar
  26. 26.
    Temple B. (1983) Systems of conservation laws with coinciding shock and rarefaction curves. Contemp. Math. 17:143–151zbMATHGoogle Scholar
  27. 27.
    Zhang M. (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transportation Res. B 36:275–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • F. Berthelin
    • 1
    Email author
  • P. Degond
    • 2
  • M. Delitala
    • 3
  • M. Rascle
    • 1
  1. 1.Laboratoire J. A. DieudonnéUniversité de NiceNiceFrance
  2. 2.MIP UMR 5640Université Paul SabatierToulouseFrance
  3. 3.Department of MathematicsPolitecnico di TorinoTorinoItaly

Personalised recommendations