Advertisement

Archive for Rational Mechanics and Analysis

, Volume 185, Issue 1, pp 105–142 | Cite as

Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field

  • Alexander Komech
  • Andrew KomechEmail author
Article

Abstract

The long-time asymptotics is analyzed for all finite energy solutions to a model \(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)eiω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.

We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ − m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).

The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled \(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.

Keywords

Cauchy Problem Solitary Wave Global Attractor Gordon Equation Nonlinear Wave Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BL83a.
    Berestycki H., Lions P.-L. (1983) Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345MathSciNetzbMATHGoogle Scholar
  2. BL83b.
    Berestycki H., Lions P.-L. (1983) Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82: 347–375MathSciNetzbMATHGoogle Scholar
  3. BL84.
    Brezis H., Lieb E.H. (1984) Minimum action solutions of some ector field equations. Comm. Math. Phys. 96: 97–113ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Boh13.
    Bohr N. (1913) On the constitution of atoms and molecules. Phil. Mag. 26: 1–25CrossRefzbMATHGoogle Scholar
  5. BP93.
    Buslaev V.S., Perel G.S. (1993) Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. St. Petersburg Math. J. 4: 1111–1142MathSciNetGoogle Scholar
  6. BP95.
    Buslaev, V.S., Perelprimeman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear Evolution Equations, Volume 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98. Amer. Math. Soc., Providence, RI, 1995Google Scholar
  7. BS03.
    Buslaev V.S., Sulem C. (2003) On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20: 419–475ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. BV92.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Volume 25 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1992Google Scholar
  9. Cuc01a.
    Cuccagna, S.: Asymptotic stability of the ground states of the nonlinear Schrödinger equation. Rend. Istit. Mat. Univ. Trieste 32, 105–118 (2002) (2001)MathSciNetzbMATHGoogle Scholar
  10. Cuc01b.
    Cuccagna S. (2001) Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54: 1110–1145MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cuc03.
    Cuccagna S. (2003) On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15: 877–903MathSciNetCrossRefzbMATHGoogle Scholar
  12. CV86.
    Cazenave T., Vázquez L. (1986) Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys. 105: 35–47ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. EGS96.
    Esteban M.J., Georgiev V., Séré E. (1996) Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differential Equations 4: 265–281MathSciNetCrossRefzbMATHGoogle Scholar
  14. ES95.
    Esteban M.J., SÉRÉ É. (1995) Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys. 171: 323–350ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Gau66.
    Gaudry G. (1966) Quasimeasures and operators commuting with convolution. Pacific J. Math. 18: 461–476MathSciNetCrossRefzbMATHGoogle Scholar
  16. GMN64.
    Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. W. A. Benjamin, Inc., New York, NY, 1964Google Scholar
  17. GNS95.
    Guo Y., Nakamitsu K., Strauss W. (1995) Global finite-energy solutions of the Maxwell-Schrödinger system. Comm. Math. Phys. 170: 181–196ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. GS79.
    Glassey R.T., Strauss W.A. (1979) Decay of a Yang-Mills field coupled to a scalar field. Comm. Math. Phys. 67: 51–67ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. GV85.
    Ginibre J., Velo G. (1985) Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43: 399–442MathSciNetzbMATHGoogle Scholar
  20. Hen81.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, 1981Google Scholar
  21. Hör90.
    Hörmander L. The Analysis of Linear Partial Differential Operators. I. Springer Study Edition. Springer-Verlag, Berlin, 1990Google Scholar
  22. Hör91.
    Hörmander, L.: On the fully nonlinear Cauchy problem with small data. II. Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), Volume 30 of IMA Vol. Math. Appl., 51–81. Springer, New York, 1991Google Scholar
  23. Kla82.
    Klainerman S. (1982) Long-time behavior of solutions to nonlinear evolution equations. Arch. Ration. Mech. Anal. 78: 73–98MathSciNetCrossRefzbMATHGoogle Scholar
  24. KMV04.
    Komech A.I., Mauser N.J., Vinnichenko A.P. (2004) Attraction to solitons in relativistic nonlinear wave equations. Russ. J. Math. Phys. 11: 289–307MathSciNetzbMATHGoogle Scholar
  25. Kom91.
    Komech A.I. (1991) Stabilization of the interaction of a string with a nonlinear oscillator. Mosc. Univ. Math. Bull. 46: 34–39MathSciNetzbMATHGoogle Scholar
  26. Kom94.
    Komech, A.I.: Linear partial differential equations with constant coefficients. Partial Differential Equations, II, Volume 31 Encyclopaedia Math. Sci., 121–255. Springer, Berlin, 1994Google Scholar
  27. Kom95.
    Komech A.I. (1995) On stabilization of string-nonlinear oscillator interaction. J. Math. Anal. Appl. 196: 384–409MathSciNetCrossRefzbMATHGoogle Scholar
  28. Kom99.
    Komech A. (1999) On transitions to stationary states in one-dimensional nonlinear wave equations. Arch. Ration. Mech. Anal. 149: 213–228MathSciNetCrossRefzbMATHGoogle Scholar
  29. Kom03.
    Komech, A.I.: On attractor of a singular nonlinear U(1)-invariant Klein–Gordon equation. Progress in Analysis, Vol. I, II (Berlin, 2001), 599–611. World Sci. Publishing, River Edge, NJ, 2003Google Scholar
  30. KS00.
    Komech A., Spohn H. (2000) Long-time asymptotics for the coupled Maxwell–Lorentz equations. Comm. Partial Differential Equations 25: 559–584MathSciNetCrossRefzbMATHGoogle Scholar
  31. KSK97.
    Komech A., Spohn H., Kunze M. (1997) Long-time asymptotics for a classical particle interacting with a scalar wave field. Comm. Partial Differential Equations 22: 307–335MathSciNetzbMATHGoogle Scholar
  32. KV96.
    Komech A.I., Vainberg B. (1996) On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations. Arch. Ration. Mech. Anal. 134: 227–248MathSciNetCrossRefzbMATHGoogle Scholar
  33. Lev96.
    Levin, B.Y.: Lectures on Entire Functions. Volume 150 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko.Google Scholar
  34. MS72.
    Morawetz C.S., Strauss W.A. (1972) Decay and scattering of solutions of a nonlinear relativistic wave equation. Comm. Pure Appl. Math. 25: 1–31MathSciNetCrossRefzbMATHGoogle Scholar
  35. PW97.
    Pillet C.-A., Wayne C.E. (1997) Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Differential Equations 141: 310–326ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Sch26.
    Schrödinger E. (1926) Quantisierung als eigenwertproblem. Ann. d. Phys. 81: 109CrossRefzbMATHGoogle Scholar
  37. Seg63a.
    Segal I.E. (1963) The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91: 129–135MathSciNetCrossRefzbMATHGoogle Scholar
  38. Seg63b.
    Segal I.E. (1963) Non-linear semi-groups. Ann. of Math. (2) 78: 339–364MathSciNetCrossRefzbMATHGoogle Scholar
  39. Str68.
    Strauss W.A. (1968) Decay and asymptotics for □ uf(u). J. Funct. Anal. 2: 409–457MathSciNetCrossRefzbMATHGoogle Scholar
  40. Str77.
    Strauss W.A. (1977) Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55: 149–162ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. Str78.
    Strauss, W.A.: Nonlinear invariant wave equations. Invariant Wave Equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Volume 73 of Lecture Notes in Phys., 197–249. Springer, Berlin, 1978Google Scholar
  42. SW90.
    Soffer A., Weinstein M.I. (1990) Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133: 119–146ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. SW92.
    Soffer A., Weinstein M.I. (1992) Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differential Equations 98: 376–390ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. SW99.
    Soffer A., Weinstein M.I. (1999) Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136: 9–74ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. Tem97.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997Google Scholar
  46. Tit26.
    Titchmarsh E. (1926) The zeros of certain integral functions. Proc. London Math. Soc. 25: 283–302MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Faculty of MathematicsWienAustria
  2. 2.Mathematics DepartmentTexas A&M UniversityTexasUSA
  3. 3.On leave from Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations