Solutions of the Dirac–Fock Equations and the Energy of the Electron-Positron Field

Article

Abstract

We consider atoms with closed shells, i.e. the electron number N is 2, 8, 10,..., and weak electron-electron interaction. Then there exists a unique solution γ of the Dirac–Fock equations \([D_{g,\alpha}^{(\gamma)},\gamma]=0\) with the additional property that γ is the orthogonal projector onto the first N positive eigenvalues of the Dirac–Fock operator \(D_{g,\alpha}^{(\gamma)}\). Moreover, γ minimizes the energy of the relativistic electron-positron field in Hartree–Fock approximation, if the splitting of \(\mathfrak{H}:=L^2(\mathbb{R}^3)\otimes \mathbb{C}^4\) into electron and positron subspace is chosen self-consistently, i.e. the projection onto the electron-subspace is given by the positive spectral projection of\(D_{g,\alpha}^{(\gamma)}\). For fixed electron-nucleus coupling constant g:=α Z we give quantitative estimates on the maximal value of the fine structure constant α for which the existence can be guaranteed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V., Barbaroux J-M., Helffer B., Siedentop H. (1999). On the stability of the relativistic electron-positron field. Comm. Math. Phys. 201:445–460MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Barbaroux J-M., Esteban M.J., Séré E. (2005). Some connections between Dirac-Fock and electron-positron Hartree-Fock. Ann. Henri Poincaré 6:85–102MATHCrossRefGoogle Scholar
  3. 3.
    Barbaroux J-M., Farkas W., Helffer B., Siedentop H. (2005). On the Hartree-Fock equations of the electron-positron field. Comm. Math. Phys. 255:131–159MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Barbaroux J-M., Helffer B., Siedentop H. (2006). Remarks on the Mittleman max-min variational method for the electron-positron field. J. Phys. A 39:85–89MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Esteban M.J., Séré E. (2001). Nonrelativistic limit of the Dirac-Fock equations. Ann. Henri Poincaré 2:941–961MATHCrossRefGoogle Scholar
  6. 6.
    Esteban M.J., Séré E. (1999). Solutions of the Dirac-Fock equations for atoms and molecules. Comm. Math. Phys. 203:499–530MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Griesemer M., Lewis R.T., Siedentop H. (1999). A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potential. Doc. Math. 4:275–283MATHMathSciNetGoogle Scholar
  8. 8.
    Griesemer M., Siedentop H. (1999). A minimax principle for the eigenvalues in spectral gaps. J. London Math. Soc. (2) 60:490–500MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mittleman M.H. (1981). Theory of relativistic effects on atoms: Configuration-space Hamiltonian. Phys. Rev. A 24:1167–1175CrossRefADSGoogle Scholar
  10. 10.
    Morozov, S.: Extension of a minimax principle for Coulomb-Dirac operators. Master’s thesis, Mathematisches Institut, Ludwig-Maximilians-Universität, August 2004Google Scholar
  11. 11.
    Paturel E. (2000). Solutions of the Dirac-Fock equations without projector. Ann. Henri Poincaré 1:1123–1157MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Reed M., Simon B. (1978). Methods of Modern Mathematical Physics, Volume 4, Analysis of Operators. Academic Press, New York, 1st EditionGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations