Archive for Rational Mechanics and Analysis

, Volume 181, Issue 1, pp 97–148 | Cite as

Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows

  • Benjamin JourdainEmail author
  • Claude Le Bris
  • Tony Lelièvre
  • Félix Otto


In this paper, we investigate the long-time behavior of some micro-macro models for polymeric fluids (Hookean model and FENE model), in various settings (shear flow, general bounded domain with homogeneous Dirichlet boundary conditions on the velocity, general bounded domain with non-homogeneous Dirichlet boundary conditions on the velocity). We use both probabilistic approaches (coupling methods) and analytic approaches (entropy methods).


Entropy Neural Network Complex System Fluid Flow Analytic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ané, C., Blachère, S., ChafaÏ, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. SMF, 2000Google Scholar
  2. 2.
    Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations 26, 43–100 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arnold, A., Unterreiter, A.: Entropy decay of discretized Fokker-Planck equations I: Temporal semidiscretization. Comput. Math. Appl. 46, 1683–1690 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barrett, J.W., Schwab, C., Süli, E.: Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15, 939–983 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of polymeric liquids, Volume 1. Wiley Interscience, 1987Google Scholar
  6. 6.
    Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of polymeric liquids, Volume 2. Wiley Interscience, 1987Google Scholar
  7. 7.
    Constantin, P., Kevrekidis, I., Titi, E.S.: Asymptotic states of a Smoluchowski equation. Arch. Ration. Mech. Anal. 174, 365–384 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Constantin, P., Kevrekidis, I., Titi, E.S.: Remarks on a Smoluchowski equation. Discrete Contin. Dyn. Syst. 11, 101–112 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62, 1501–1519 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54, 1–42 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. International Series of Monographs on Physics. Oxford University Press, Oxford, 1988Google Scholar
  12. 12.
    Du, Q., Liu, C., Yu, P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4, 709–731 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    E, W., Li, T.J., Zhang, P.W.: Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys. 248, 409–427 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Evans, L. C.: A survey of entropy methods for partial differential equations. Bull. Amer. Math. Soc. 41, 409–438 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, 1977Google Scholar
  16. 16.
    Jourdain, B., Le Bris, C., Lelièvre, T.: On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newtonian Fluid Mech. 122, 91–106 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jourdain, B., Le Bris, C., Lelièvre, T.: An elementary argument regarding the long-time behaviour of the solution to a stochastic differential equation. An. Univ. Craiova Ser. Math. Comput. Sci. 32, 39–47 (2005)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. Probabilistic Methods in Fluids Proceedings of the Swansea 2002 Workshop. Davies, I.M., Jacob, N., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds.), World Scientific, 2003, pp. 205–223Google Scholar
  19. 19.
    Jourdain, B., Lelièvre, T., Le Bris, C.: Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Models Methods in Appl. Sci. 12, 1205–1243 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209, 162–193 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Li, T., Zhang, H., Zhang, P.W.: Local existence for the dumbbell model of polymeric fluids. Comm. Partial Differential Equations 29, 903–923 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lindvall, T.: Lectures on the coupling method. Wiley, 1992Google Scholar
  23. 23.
    Luo, C., Zhang, H., Zhang, P.W.: The structure of equilibrium solutions of one dimensional Doi equation. Nonlinearity 18, 379–389 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101, 185–232 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Odasso, C.: Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. IH Poincaré-PR, in pressGoogle Scholar
  27. 27.
    Öttinger, H.C.: Stochastic Processes in Polymeric Fluids. Springer, 1995Google Scholar
  28. 28.
    Otto, F.: Suspensions of rod-like molecules: transient growth of perturbations of homogeneous flows. Preprint, 2004Google Scholar
  29. 29.
    Renardy, M.: An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 313–327 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Snyders, J., Zakai, M.: On nonnegative solutions of the equation AD+DA'=-C. SIAM J. Appl. Math. 18, 704–714 (1970)CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    Temam, R.: Navier-Stokes Equations. Revised edition, North-Holland, 1979Google Scholar
  32. 32.
    Triebel, H.: Interpolation theory, function spaces, differential operators. North- Holland, 1978Google Scholar
  33. 33.
    Zhang, H., Zhang, P.W.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. In pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Jourdain
    • 1
    Email author
  • Claude Le Bris
    • 1
  • Tony Lelièvre
    • 1
    • 2
  • Félix Otto
    • 3
  1. 1.CERMICSEcole Nationale des Ponts et Chaussées (ParisTech)Champs-sur-MarneFrance
  2. 2.CRMUniversité de MontréalMontréalCanada
  3. 3.Institute for Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations