The Concept of a Minimal State in Viscoelasticity: New Free Energies and Applications to PDEs

Article

Abstract

We show here the impact on the initial-boundary value problem, and on the evolution of viscoelastic systems of the use of a new definition of state based on the stress-response (see, e.g., [48, 16, 41]). Comparisons are made between this new approach and the traditional one, which is based on the identification of histories and states. We shall refer to a stress-response definition of state as the minimal state [29]. Materials with memory and with relaxation are discussed.

The energetics of linear viscoelastic materials is revisited and new free energies, expressed in terms of the minimal state descriptor, are derived together with the related dissipations. Furthermore, both the minimum and the maximum free energy are recast in terms of the minimal state variable and the current strain.

The initial-boundary value problem governing the motion of a linear viscoelastic body is re-stated in terms of the minimal state and the velocity field through the principle of virtual power. The advantages are (i) the elimination of the need to know the past-strain history at each point of the body, and (ii) the fact that initial and boundary data can now be prescribed on a broader space than resulting from the classical approach based on histories. These advantages are shown to lead to natural results about well-posedness and stability of the motion.

Finally, we show how the evolution of a linear viscoelastic system can be described through a strongly continuous semigroup of (linear) contraction operators on an appropriate Hilbert space. The family of all solutions of the evolutionary system, obtained by varying the initial data in such a space, is shown to have exponentially decaying energy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banfi, C.: Su una nuova impostazione per l'analisi dei sistemi ereditari. Ann. Univ. Ferrara Sez. VII (N.S.) 23, 29–38 (1977)MATHMathSciNetGoogle Scholar
  2. 2.
    Bourdaud, G., Lanza de Cristoforis, M., Sickel, W.: Superposition operators and functions of bounded p-variation. Preprint, Institut de Mathématiques de Jussieu, Projet d'analyse fonctionelle, 2004Google Scholar
  3. 3.
    Breuer, S., Onat, E.T.: On recoverable work in linear viscoelasticity. Z. Angew. Math. Phys. 15, 13–21 (1964)CrossRefGoogle Scholar
  4. 4.
    Breuer, S., Onat, E.T.: On the determination of free energy in linear viscoelasticity. Z. Angew. Math. Phys. 15, 184–191 (1964)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Coleman, B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–45 (1964)Google Scholar
  6. 6.
    Coleman, B.D., Mizel, V.J.: Norms and semi-groups in the theory of fading memory. Arch. Ration. Mech. Anal. 23, 87–123 (1967)Google Scholar
  7. 7.
    Coleman, B.D., Mizel, V.J.: On the general theory of fading memory. Arch. Ration. Mech. Anal. 29, 18–31 (1968)MATHGoogle Scholar
  8. 8.
    Coleman, B.D., Owen, D.R.: A mathematical foundation for thermodynamics. Arch. Ration. Mech. Anal. 54, 1–104 (1974)CrossRefMATHGoogle Scholar
  9. 9.
    Coleman, B.D., Owen, D.R.: On thermodynamics and elastic-plastic materials. Arch. Ration. Mech. Anal. 59: 25–51 (1975)Google Scholar
  10. 10.
    Datko, R.: Extending a theorem of A. M. Liapunov to Hilbert spaces. J. Math. Anal. Appl 32, 610–616 (1970)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Day, W.A.: Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. Appl. Math. 23, 1–15 (1970)MATHGoogle Scholar
  13. 13.
    Day, W.A.: The Thermodynamics of Simple Material with Fading Memory. Springer, New York, 1972Google Scholar
  14. 14.
    Day, W.A.: The thermodynamics of materials with memory. In: Materials with Memory D. Graffi ed., Liguori, Napoli (1979)Google Scholar
  15. 15.
    Del Piero, G.: The relaxed work in linear viscoelasticity. Mathematics Mech. Solids, 9, no. 2, 175–208 (2004)Google Scholar
  16. 16.
    Del Piero, G., Deseri, L.: On the concepts of state and free energy in linear viscoelasticity. Arch. Ration. Mech. Anal. 138, 1–35 (1997)CrossRefMATHGoogle Scholar
  17. 17.
    Del Piero, G., Deseri, L.: Monotonic, completely monotonic and exponential relaxation functions in linear viscoelasticity. Quart. Appl. Math. 53, 273–300 (1995)MATHMathSciNetGoogle Scholar
  18. 18.
    Del Piero, G., Deseri, L.: On the analytic expression of the free energy in linear viscoelasticity. J. Elasticity 43, 247–278 (1996)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Deseri, L.: Restrizioni a priori sulla funzione di rilassamento in viscoelasticità lineare (in Italian). Doctorate Dissertation (Advisor: Prof. G. Del Piero), The National Library of Florence, Italy 1993Google Scholar
  20. 20.
    Deseri, L., Gentili, G., Golden, M.J.: An explicit formula for the minimum free energy in linear viscoelasticity. J. Elasticity 54, 141–185 (1999)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Deseri, L., Gentili, G., Golden M.J.: Free energies and Saint-Venant's principle in linear viscoelasticity. Submitted for publicationGoogle Scholar
  22. 22.
    Deseri, L., Golden, J.M.: The minimum free energy for continuous spectrum materials. Submitted for publicationGoogle Scholar
  23. 23.
    Dill, E.H.: Simple materials with fading memory. In: Continuum Physics II. A.C. Eringen ed. Academic, New York, 1975Google Scholar
  24. 24.
    Fabrizio, M.: Existence and uniqueness results for viscoelastic materials. In: Crack and Contact Problems for Viscoelastic Bodies. G.A.C. Graham and J.R. Walton eds., Springer-Verlag, Vienna, 1995Google Scholar
  25. 25.
    Fabrizio, M., Gentili, G., Golden, J.M.: The minimum free energy for a class of compressible fluids. Adv. Differential Equations 7, 319–342 (2002)MATHMathSciNetGoogle Scholar
  26. 26.
    Fabrizio, M., Gentili, G., Golden, J.M.: Non-isothermal free energies for linear theories with memory. Math. Comput. Modelling 39, 219–253 (2004)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Fabrizio, M., Giorgi, C., Morro, A.: Free energies and dissipation properties for systems with memory. Arch. Ration. Mech. Anal. 125, 341–373 (1994)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Fabrizio, M., Giorgi, M., Morro, A.: Internal dissipation, relaxation property and free energy in materials with fading memory. J. Elasticity 40, 107–122 (1995)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Fabrizio, M., Golden, M.J.: Maximum and minimum free energies for a linear viscoelastic material. Quart. Appl. Math. 60, 341–381 (2002)MATHMathSciNetGoogle Scholar
  30. 30.
    Fabrizio, M., Golden, M.J.: Minimum free energies for materials with finite memory. J. Elasticity 72, 121–143 (2003)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Fabrizio, M., Lazzari, B.: The domain of dependence inequality and asymptotic stability for a viscoelastic solid. Nonlinear Oscil. 1, 117–133 (1998)MATHMathSciNetGoogle Scholar
  32. 32.
    Fabrizio, M., Lazzari, B.: On the existence and the asymptotic stability of solutions for linearly viscoelastic solids. Arch. Ration. Mech. Anal. 116, 139-152 (1991)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Fabrizio, M., Morro, A.: Viscoelastic relaxation functions compatible with thermodynamics. J. Elasticity 19, 63–75 (1988)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia, 1992Google Scholar
  35. 35.
    Gentili, G.: Maximum recoverable work, minimum free energy and state space in linear viscoelasticity. Quart. Appl. Math. 60, 153–182 (2002)MATHMathSciNetGoogle Scholar
  36. 36.
    Gohberg, I.C., Krein, M.G.: Systems of integral equations on a half-line with kernels depending on the difference of arguments. Am. Math. Soc. Transl. Ser. 2, 14 217–287 (1960)Google Scholar
  37. 37.
    Golden, M.J.: Free energies in the frequency domain: the scalar case. Quart. Appl. Math. 58, 127–150 (2000)MATHMathSciNetGoogle Scholar
  38. 38.
    Golden, M.J., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticy. Springer, Berlin, 1988Google Scholar
  39. 39.
    Graffi, D.: Sull'expressione analitica di alcune grandezze termodinamiche nei materiali con memoria. Rend.Sem. Mat. Univ. Padova 68, 17–29 (1982)MATHMathSciNetGoogle Scholar
  40. 40.
    Graffi, D.: Ancora sull'expressione analitica dell'energia libera nei materiali con memoria. Atti Acc. Science Torino 120, 111–124 (1986)MathSciNetGoogle Scholar
  41. 41.
    Graffi, D., Fabrizio, M.: Sulla nozione di stato per materiali viscoelastici di tipo ``rate''. Atti Acc. Lincei Rend. Fis, (8), 83, 201–208 (1989)Google Scholar
  42. 42.
    Gurtin, M.E., Herrera, I.: On dissipation inequalities and linear viscoelasticity. Quart. Appl. Math, 23, 235–245 (1965)MATHMathSciNetGoogle Scholar
  43. 43.
    Gurtin, M.E., Hrusa, W.J.: On energies for nonlinear viscoelastic materials of single-integral type. Quart. Appl. Math. 46, 381–392 (1988)MATHMathSciNetGoogle Scholar
  44. 44.
    Gurtin, M.E., Hrusa, W.J.: On the thermodynamics of viscoelastic materials of single-integral type. Quart. Appl. Math. 49, 67–85 (1991)MATHMathSciNetGoogle Scholar
  45. 45.
    Halmos, P.R.: Finite-dimensional Vector Spaces. Springer-Verlag, New York, 1972Google Scholar
  46. 46.
    Morro, A., Vianello, M.: Minimal and maximal free energy for materials with memory. Boll. Un. Mat. Ital. 4A, 45–55 (1990)MATHMathSciNetGoogle Scholar
  47. 47.
    Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen, 1953Google Scholar
  48. 48.
    Noll, W.: A new mathematical theory of simple materials, Arch. Ration. Mech. Anal. 48, 1–50 (1972)MATHMathSciNetGoogle Scholar
  49. 49.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Lectures Notes in Mathematics, 10, University of Maryland, 1974Google Scholar
  50. 50.
    Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York, 1972Google Scholar
  51. 51.
    Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon, Oxford, 1937Google Scholar
  52. 52.
    Truesdell, C.A., Noll, W.: The Non-linear Filed Theory of Mechanics. Handbuck der Physik, III, 3, Flugge (Ed.). Springer Verlag, Berlin, 1965Google Scholar
  53. 53.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, 1963Google Scholar
  54. 54.
    Widder, E.T.: The Laplace Transform. Princeton University Press, 1941Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Dipartimento S.A.V.A.Università degli Studi del MoliseCampobassoItalia
  2. 2.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA
  3. 3.Dipartimento di MatematicaUniversità degli Studi di BolognaBolognaItalia
  4. 4.School of Mathematical SciencesDublin Institute of TechnologyIreland

Personalised recommendations