Advertisement

Archive for Rational Mechanics and Analysis

, Volume 180, Issue 3, pp 493–506 | Cite as

Screening in Interacting Particle Systems

  • B. Niethammer
  • J.J.L. Velázquez
Article

Abstract

We consider the Green's function of the Laplace operator in domains with spherical holes (particles). Under natural assumptions on the distribution of particles we show that the Green's function decays exponentially over distances larger than the screening length. This result is fundamental for example when deriving effective equations for coarsening systems in unbounded domains.

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Laplace Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alikakos, N., Fusco, G.: Ostwald ripening for dilute systems under quasistationary dynamics. Comm. Math. Phys. 238, 429–470 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alikakos, N., Fusco, G., Karali, G.: Ostwald ripening in two dimensions. J. Differential Equations 205, 1–43 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cioranescu, D., Murat, F.: A strange term coming from nowhere. Topics in the Mathematical Modelling of Composite Materials. A. Cherkaev and R. V. Kohn (ed.), Birkhäuser, pp. 45–94, 1997Google Scholar
  4. 4.
    Figari, R., Papanicolaou, G., Rubinstein, J.: The point interaction approximation for diffusion in regions with many small holes. Stochastic methods in biology (Nagoya, 1985). Lecture notes in Biomath. 70, Springer, Berlin, 75–86, 1987Google Scholar
  5. 5.
    Giusti, E.: Minimal surfaces and functions of bounded variation. Birkhäuser, 1984Google Scholar
  6. 6.
    Jabin, P.E., Otto, F.: Identification of the Dilute Regime in Particle Sedimentation. Comm. Math. Phys. 250, 415–432 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)CrossRefGoogle Scholar
  8. 8.
    Marqusee, J.A., Ross, J.: Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80, 536–543 (1984)CrossRefADSGoogle Scholar
  9. 9.
    Niethammer, B., Otto, F.: Ostwald Ripening: The screening length revisited. Calc. Var. Partial Differential Equations 13, 33–68 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Niethammer, B., Otto, F.: Domain coarsening in thin films. Comm. Pure Appl. Math. 54, 361–384 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Niethammer, B., Velázquez, J.J.L.: Global well-posedness for an inhomogeneous LSW model in unbounded domains. Math. Annalen 328, 481–501 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Niethammer, B., Velázquez, J.J.L.: Homogenization in coarsening systems I: deterministic case. Math. Mod. Meth. Appl. Sci. 14, 1211–1233 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Niethammer, B., Velázquez, J.J.L.: Homogenization in coarsening systems II: stochastic case. Math. Mod. Meth. Appl. Sci. 14, 1–24 (2004)CrossRefGoogle Scholar
  14. 14.
    Ozawa, S.: On an elaboration of M. Kac's theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles. Comm. Math. Phys. 22, 337–358 (1997)Google Scholar
  15. 15.
    Rauch, J., Taylor, M.: Electrostatic screening. J. Math. Phys. 16, 284–288 (1976)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Rauch, J., Taylor, M.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18, 27–59 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Velázquez, J.J.L.: On the effect of stochastic fluctuations in the dynamics of the Lifshitz–Slyozov–Wagner model. J. Stat. Phys. 99, 57–113 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen. Z. Elektrochemie 65, 581–594 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Departamento de Matemática Aplicada Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations