Archive for Rational Mechanics and Analysis

, Volume 180, Issue 2, pp 183–236 | Cite as

A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence

Article

Abstract

We derive a hierarchy of plate models from three-dimensional nonlinear elasticity by Γ-convergence. What distinguishes the different limit models is the scaling of the elastic energy per unit volume ∼hβ, where h is the thickness of the plate. This is in turn related to the strength of the applied force ∼hα. Membrane theory, derived earlier by Le Dret and Raoult, corresponds to α=β=0, nonlinear bending theory to α=β=2, von Kármán theory to α=3, β=4 and linearized vK theory to α>3. Intermediate values of α lead to certain theories with constraints. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [29] which states that for maps v:(0,1)3→ℝ3, the L2 distance of ∇v from a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of all rotations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elasticity 25, 137–148 (1991)MATHMathSciNetGoogle Scholar
  2. 2.
    Antman, S.S.: Nonlinear problems of elasticity. Springer, New York, 1995Google Scholar
  3. 3.
    Anzelotti, G., Baldo, S., Percivale, D.: Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity. Asymptotic Anal. 9, 61–100 (1994)MathSciNetGoogle Scholar
  4. 4.
    Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91, 086105 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Ben Amar, M., Pomeau, Y.: Crumpled paper. Proc. Royal Soc. Lond. A 453, 729–755 (1997)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Ben Belgacem, H.: Une méthode de Γ-convergence pour un modèle de membrane non linéaire. (French) [A Γ-convergence method for a nonlinear membrane model] C. R. Acad. Sci. Paris Sér. I 324, 845–849 (1997)MATHADSGoogle Scholar
  7. 7.
    Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–685 (2000)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films – three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164, 1–37 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis Vol. I. American Math. Soc., 2000Google Scholar
  10. 10.
    Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47, 531–576 (1999)CrossRefMATHMathSciNetADSGoogle Scholar
  11. 11.
    Braides, A., Truskinosky, L.: In preparationGoogle Scholar
  12. 12.
    Casarino, V., Percivale, D.: A variational model for nonlinear elastic plates. J. Convex Anal. 3, 221–243 (1996)MATHMathSciNetGoogle Scholar
  13. 13.
    Cerda, E., Chaieb, S., Melo, F., Mahadevan, L.: Conical dislocations in crumpling. Nature 401, 46–49 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Chaudhuri, N., Müller, S.: Rigidity estimate for two incompatible wells. Calc. Var. 19, 379–390 (2004)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Chaudhuri, N., Müller, S.: Scaling of the energy for thin martensitic films. Preprint MPI-MIS 59/2004Google Scholar
  16. 16.
    Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73, 349–389 (1980)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ciarlet, P.G.: Mathematical elasticity II – theory of plates. Elsevier, Amsterdam, 1997Google Scholar
  18. 18.
    Conti, S.: Low energy deformations of thin elastic plates: isometric embeddings and branching patterns. Habilitation thesis, the University of Leipzig, 2003Google Scholar
  19. 19.
    Conti, S., Maggi, F.: In preparationGoogle Scholar
  20. 20.
    Conti, S., Maggi, F., Müller, S.: Preprint MPI-MI 54/2005Google Scholar
  21. 21.
    Dal Maso, G.: An introduction to Γ-convergence. Birkhäuser, 1993Google Scholar
  22. 22.
    DeGiorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)MathSciNetGoogle Scholar
  23. 23.
    DiDonna, B.A., Venkataramani, S.C., Witten, T.A., Kramer, E.M.: Singularities, structures and scaling in deformed elastic m-sheets. Phys. Rev. E 65, 016603 (2002)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Dolzmann, G., Müller, S.: Microstructure with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101–141 (1995)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Föppl, A.: Vorlesungen über technische Mechanik 5. Leipzig, pp. 132–139, 1907Google Scholar
  26. 26.
    Fonseca, I., Gangbo, W.: Degree theory in analysis and applications. Oxford Univ. Press, 1995Google Scholar
  27. 27.
    Fox, D.D., Raoult, A., Simo, J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124, 157–199 (1993)CrossRefMATHGoogle Scholar
  28. 28.
    Friesecke, G., James, R.D., Müller, S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris. Sér. I 334, 173–178 (2002)MATHMathSciNetGoogle Scholar
  29. 29.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55, 1461–1506 (2002)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Friesecke, G., James, R.D., Müller, S.: The Föppl von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. C. R. Acad. Sci. Paris. Sér. I 335, 201–206 (2002)MATHMathSciNetGoogle Scholar
  31. 31.
    Friesecke, G., James, R.D., Müller, S., Mora, M.G.: Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris. Sér. I 336, 697–702 (2003)MATHMathSciNetGoogle Scholar
  32. 32.
    Friesecke, G., James, R.D., Müller, S.: Rigidity of maps close to SO(n) and equiintegrability. In preparationGoogle Scholar
  33. 33.
    Friesecke, G., James, R.D., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory. In preparation.Google Scholar
  34. 34.
    Geymonat, G., Suquet, P.: Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci. 8, 206–222 (1986)MATHMathSciNetADSGoogle Scholar
  35. 35.
    Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)MATHCrossRefGoogle Scholar
  36. 36.
    Hartmann, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Amer. J. Math. 81, 901–920 (1959)MathSciNetGoogle Scholar
  37. 37.
    Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Amer. Math. Soc. 118, 181–188 (1993)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Jin, W.M., Sternberg, P.: Energy estimates for the von Kármán model of thin film blistering. J. Math. Phys. 42, 192–199 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    John, F.: Rotation and strain. Comm. Pure Appl. Math. 14, 391–413 (1961)MATHMathSciNetGoogle Scholar
  40. 40.
    John, F.: Bounds for deformations in terms of average strains. In: Inequalities III O. Shisha (ed.), pp. 129–144, 1972Google Scholar
  41. 41.
    Kirchheim, B.: Geometry and rigidity of microstructures. Habilitation thesis, University of Leipzig, 2001 (see also: MPI-MIS Lecture Notes. 16/ 2003 http://www.mis.mpg.de/preprints/ln/index.html)
  42. 42.
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)MATHGoogle Scholar
  43. 43.
    von Kármán, T.: Festigkeitsprobleme im Maschinenbau in Encyclopädie der Mathematischen Wissenschaften vol. IV/4, Leipzig, 1910, pp. 311–385Google Scholar
  44. 44.
    Le Dret, H., Meunier, N.: Heterogeneous wires made of martensitic material. C.R. Acad. Sci. Paris Sér. I 337, 143–147 (2003)MATHGoogle Scholar
  45. 45.
    Le Dret, H., Raoult, A.: Le modéle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle. C. R. Acad. Sci. Paris Sér. I 317, 221–226 (1993)MATHGoogle Scholar
  46. 46.
    Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578 (1995)ADSGoogle Scholar
  47. 47.
    Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84 (1996)CrossRefMATHMathSciNetADSGoogle Scholar
  48. 48.
    Liu, F.-C.: A Lusin property of Sobolev functions. Indiana U. Math. J. 26, 645–651 (1977)CrossRefMATHGoogle Scholar
  49. 49.
    Lobkovsky, A.E.: Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53, 3750–3759 (1996)CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th Edition. Cambridge University Press, Cambridge, 1927Google Scholar
  51. 51.
    Marigo, J.J., Ghidouche, H., Sedkaoui, Z.: Des poutres flexibles aux fils extensibles: une hiérachie de modèles asymptotiques. C. R. Acad. Sci. Paris Sér. IIb 326, 79–84 (1998)MATHADSGoogle Scholar
  52. 52.
    Morgenstern, D.: Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätztheorie. Arch. Ration. Mech. Anal. 4, 145–152 (1959)MATHMathSciNetGoogle Scholar
  53. 53.
    Morrey, C.B.: Multiple integrals in the calculus of variations. Springer, 1966Google Scholar
  54. 54.
    Monneau, R.: Justification of nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169, 1–34 (2003)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Parial Differential Equations 18, 287–305 (2003)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Analyse non linéaire 21, 271–299 (2004)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Mora, M.G., Müller, S.: Derivation of a rod theory for phase-transforming materials. Preprint MPI-MIS 40/2005Google Scholar
  58. 58.
    Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Preprint MPI-MIS 4/ 2004. To appear in Math. Z.Google Scholar
  59. 59.
    Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differential Geom. 66, 47–69 (2004)MATHMathSciNetGoogle Scholar
  60. 60.
    Pantz, O.: Une justification partielle du modèle de plaque en flexion par Γ-convergence. C. R. Acad. Sci. Paris Sér. I 332, 587–592 (2001)MATHMathSciNetADSGoogle Scholar
  61. 61.
    Pantz, O.: On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167, 179–209 (2003)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Pantz, O.: Personal communicationGoogle Scholar
  63. 63.
    Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36, 85–99 (1986)MATHMathSciNetGoogle Scholar
  64. 64.
    Pipkin, A.C.: Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95, 93–115 (1986)MATHMathSciNetGoogle Scholar
  65. 65.
    Pogorelov, A.V.: Surfaces with bounded extrinsic curvature (Russian). Kharhov, 1956Google Scholar
  66. 66.
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces. In : Translation of mathematical monographs vol. 35. American Math. Soc., 1973Google Scholar
  67. 67.
    Raoult, A.: Personal communicationGoogle Scholar
  68. 68.
    Reissner, E.: On tension field theory. Proc. 5th Internat. Congr. Appl. Mech., 88–92 (1938) (reprinted in [69])Google Scholar
  69. 69.
    Reissner, E.: Selected works in applied mechanics and mathematics. Jones and Bartlett Publ., London, pp. 134–146, 1996Google Scholar
  70. 70.
    Reshetnyak, Y.G.: Liouville's theory on conformal mappings under minimial regularity assumptions. Siberian Math. J. 8, 69–85 (1967) (Sibirskii Mat. Zh. 8, 91–114 (1967))CrossRefMATHGoogle Scholar
  71. 71.
    Sharon, E., Roman, B., Marder, M., Shin, G.S., Swinney, H.L.: Mechanics: Buckling cascades in free sheets - Wavy leaves may not depend only on their genes to make their edges crinkle. Nature 419, 579 (2002)CrossRefADSGoogle Scholar
  72. 72.
    Shu, Y.C.: Heteregeneous thin films of martensitic materials. Arch. Ration. Mech. Anal. 153, 39–90 (2000)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    Šverák, V.: Regulartiy properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100, 105–127 (1988)MATHCrossRefGoogle Scholar
  74. 74.
    Truesdell, C.: Comments on rational continuum mechanics, Three lectures for the international Symposium on Continuum Mechanics and Partial Differential Equations, Instituto de Matemática, University Federal do Rio de Janeiro, August 1-5, 1977, pp. 495–603 of Contemporary developments in continuum mechanics and partial differential equations ed. G.M. LaPenha and L.E. Medeiros, North-Holland, Amsterdam, 1978Google Scholar
  75. 75.
    Venkataramani, S.: Lower bounds for the energy in a crumpled sheet - A minimal ridge. Nonlinearity 17, 301–312 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  76. 76.
    Villaggio, P.: Mathematical models for elastic structures. Cambridge Univ. Press, 1997Google Scholar
  77. 77.
    Vodopyanov, S.K., Goldstein, V.M.: Quasiconformal mappings and spaces with generalized first derivatives. Siberian Math. J. 17, 399–411 (1976) (Sibirskii Mat. Zh. 17, 515–531 (1976))CrossRefGoogle Scholar
  78. 78.
    Wagner, H.: Ebene Blechwandträger mit sehr dünnem Steigblech. Z. Flugtechnik u. Motorluftschiffahrt 20, 200–207, 227–233, 256–262, 279–284, 306–314 (1929)Google Scholar
  79. 79.
    Ziemer, W.: Weakly Differentiable Functions. Springer-Verlag, New York, 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gero Friesecke
    • 1
    • 2
  • Richard D. James
    • 3
  • Stefan Müller
    • 4
  1. 1.Mathematical InstituteUniversity of WarwickCoventryUK
  2. 2.Centre for Mathematical SciencesTU MunichGarchingGermany
  3. 3.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations