Advertisement

Low Mach Number Limit of the Full Navier-Stokes Equations

  • Thomas AlazardEmail author
Article

Abstract

The low Mach number limit for classical solutions of the full Navier-Stokes equations is here studied. The combined effects of large temperature variations and thermal conduction are taken into account. In particular, we consider general initial data. The equations lead to a singular problem, depending on a small scaling parameter, whose linearized system is not uniformly well-posed. Yet, it is proved that solutions exist and they are uniformly bounded for a time interval which is independent of the Mach number Ma ∈ (0,1], the Reynolds number Re ∈ [1,+∞] and the Péclet number Pe ∈ [1,+∞]. Based on uniform estimates in Sobolev spaces, and using a theorem of G. Métivier & S. Schochet [30], we next prove that the penalized terms converge strongly to zero. This allows us to rigorously justify, at least in the whole space case, the well-known computations given in the introduction of P.-L. Lions' book [26].

Keywords

Neural Network Thermal Conduction Reynolds Number Initial Data Mach Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alazard, T.: Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions. Adv. in Differential Equations 10, 19–44 (2005)MathSciNetGoogle Scholar
  2. 2.
    Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bresch, D., Desjardins, B., Grenier, E., Lin, C.-K.: Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109, 125–149 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations 28, 843–868 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheverry, C., Guès, O., Métivier, G.: Oscillations fortes sur un champ linéairement dégénéré. Ann. Sci. École Norm. Sup. 36, 691–745 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Danchin, R.: Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. École Norm. Sup. 35, 27–75 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Desjardins, B., Lin, C.-K.: A survey of the compressible Navier-Stokes equations. Taiwanese J. Math. 3, 123–137 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gallagher, I.: Résultats récents sur la limite incompressible. Séminaire Bourbaki 926, 2003–2004Google Scholar
  14. 14.
    Grenier, E.: Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76, 477–498 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    van der Heul, D.R., Vuik, C., Wesseling, P.: A conservative pressure-correction method for the Euler and ideal MHD equations at all speeds. ICFD Conference on Numerical Methods for Fluid Dynamics, Part II (Oxford, 2001). Internat. J. Numer. Methods Fluids 40, 521–529 (2002)Google Scholar
  16. 16.
    Hoff, D.: The zero-Mach limit of compressible flows. Comm. Math. Phys. 192, 543–554 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hörmander, L.: Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, 1997Google Scholar
  18. 18.
    Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)MathSciNetGoogle Scholar
  19. 19.
    Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26, 399–410 (1989)Google Scholar
  20. 20.
    Kawashima, S., Shizuta, Y.: On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J. 40, 449–464 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kawashima, S., Yong, W.-A.: Dissipative Structure and Entropy for Hyperbolic Systems of Balance Laws. Arch. Ration. Mech. Anal. 174, 345–364 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Klainerman, S., Majda, A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)ADSGoogle Scholar
  25. 25.
    Lannes, D.: Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. Preprint Université Bordeaux I (2004)Google Scholar
  26. 26.
    Lions, P.-L.: Mathematical topics in fluid mechanics Vol. 1, Incompressible models. In: Oxford Lecture Series in Mathematics and its Applications 3. Oxford Science Publications, 1996Google Scholar
  27. 27.
    Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences 53. Springer-Verlag, 1984Google Scholar
  29. 29.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Métivier, G., Schochet, S.: Limite incompressible des équations d'Euler non isentropiques. Séminaire: Équations aux Dérivées Partielles, Exp. No. X, 17 (2001)Google Scholar
  32. 32.
    Métivier, G., Schochet, S.: Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Meyer, Y.: Remarques sur un théorème de J.-M. Bony. Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980). Rend. Circ. Mat. Palermo (2), 1–20 (1981)Google Scholar
  34. 34.
    Munz, C.-D.: Computational fluid dynamics and aeroacoustics for low Mach number flow. In: Hyperbolic partial differential equations (Hamburg, 2001), 269–320. Vieweg, Braunschweig, 2002Google Scholar
  35. 35.
    Schneider, T., Botta, N., Geratz, K.J., Klein, R.: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys. 155, 248–286 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49–75 (1986)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Schochet, S.: Fast singular limits of hyperbolic PDE's. J. Differential Equations 114, 476–512 (1994)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Secchi, P.: On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2, 107–125 (2000)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Secchi, P.: On slightly compressible ideal flow in the half-plane. Arch. Ration. Mech. Anal. 161, 231–255 (2002)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. In: Progress in Mathematics 100. Birkhäuser Boston Inc., 1991Google Scholar
  41. 41.
    Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26, 323–331 (1986)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Vatsa, V.N., Turkel, E.: Choice of Variables and Preconditioning for Time Dependent Problems. AIAA, 16th Computational Fluid Dynamics Conference (Orlando), 2003Google Scholar
  43. 43.
    Zeytounian, R.K.: Theory and applications of nonviscous fluid flows. Springer-Verlag, Berlin, 2002Google Scholar
  44. 44.
    Zeytounian, R.K.: Theory and applications of viscous fluid flows. Springer-Verlag, Berlin, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.MAB Université de Bordeaux ITalence CedexFrance

Personalised recommendations