Archive for Rational Mechanics and Analysis

, Volume 179, Issue 3, pp 353–387

Weak Solutions, Renormalized Solutions and Enstrophy Defects in 2D Turbulence

  • Milton C. Lopes Filho
  • Anna L. Mazzucato
  • Helena J. Nussenzveig Lopes
Article
  • 135 Downloads

Abstract

Enstrophy, half the integral of the square of vorticity, plays a role in 2D turbulence theory analogous to the role of kinetic energy in the Kolmogorov theory of 3D turbulence. It is therefore interesting to obtain a description of the way enstrophy is dissipated at high Reynolds numbers. In this article we explore the notions of viscous and transport enstrophy defect, which model the spatial structure of the dissipation of enstrophy. These notions were introduced by G. Eyink in an attempt to reconcile the Kraichnan-Batchelor theory of 2D turbulence with current knowledge of the properties of weak solutions of the equations of incompressible and ideal fluid motion. Three natural questions arise from Eyink's theory: (i) existence of the enstrophy defects, (ii) conditions for the equality of transport and viscous enstrophy defects, (iii) conditions for the vanishing of the enstrophy defects. In [10], Eyink proved a number of results related to these questions and formulated a conjecture on how to answer these problems in a physically meaningful context. In the present article we improve and extend some of Eyink's results and present a counterexample to his conjecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975Google Scholar
  2. 2.
    Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II 12, 233–239 (1969)MATHGoogle Scholar
  3. 3.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin, 1976Google Scholar
  4. 4.
    Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston, MA, 1988Google Scholar
  5. 5.
    Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4, 553–586 (1991)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    DiPerna, R.J., Majda, A.J.: Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40, 301–345 (1987)MATHMathSciNetGoogle Scholar
  8. 8.
    Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)CrossRefADSMATHMathSciNetGoogle Scholar
  9. 9.
    Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1990Google Scholar
  10. 10.
    Eyink, G.L.: Dissipation in turbulent solutions of 2D Euler equations. Nonlinearity 14, 787–802 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    Frisch, U.: Turbulence, The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995Google Scholar
  12. 12.
    Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys Fluids 10, 1417–1423 (1967)CrossRefGoogle Scholar
  13. 13.
    Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, Incompressible models, Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1996Google Scholar
  14. 14.
    Lopes Filho, M.C., Nussenzveig Lopes, H.J., Tadmor, E.: Approximate solutions of the incompressible Euler equations with no concentrations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 371–412 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Majda, A.J.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002Google Scholar
  17. 17.
    Schochet, S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Comm. Partial Differential Equations 20, 1077–1104 (1995)MATHMathSciNetGoogle Scholar
  18. 18.
    Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys. 210, 541–603 (2000)CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970Google Scholar
  20. 20.
    Triebel, H.: Theory of function spaces. II. Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992Google Scholar
  21. 21.
    Vishik, M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. (4) 32, 769–812 (1999)Google Scholar
  23. 23.
    Vecchi, I., Wu, S.J.: On L 1-vorticity for 2-D incompressible flow. Manuscripta Math. 78, 403–412 (1993)MATHMathSciNetGoogle Scholar
  24. 24.
    Yudovič, V.I.: Non-stationary flows of an ideal incompressible fluid. uZ. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)Google Scholar
  25. 25.
    Yudovich, V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Milton C. Lopes Filho
    • 1
  • Anna L. Mazzucato
    • 2
  • Helena J. Nussenzveig Lopes
    • 1
  1. 1.Depto. de MatemáticaIMECC-UNICAMPCampinasBrazil
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkU.S.A

Personalised recommendations