Advertisement

Archive for Rational Mechanics and Analysis

, Volume 179, Issue 2, pp 153–216 | Cite as

The Reconstruction Problem for the Euler-Poisson System in Cosmology

  • Grégoire Loeper
Article

Abstract

The motion of a continuum of matter subject to gravitational interaction is classically described by the Euler-Poisson system. Prescribing the density of matter at initial and final times, we are able to obtain weak solutions for this equation by minimizing the action of the Lagrangian which is a convex functional. Through this variational formulation, the reconstruction problem becomes very similar to an optimal transportation problem. Then we see that such minimizing solutions are consistent with smooth solutions of the Euler-Poisson system and enjoy some special regularity properties.

Keywords

Neural Network Transportation Complex System Weak Solution Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications [Mathematics & Applications] 17 Springer-Verlag, Paris, 1994Google Scholar
  2. 2.
    Bec, J.: Particules Singularités et Turbulence. Phd thesis, Thèse de l'Université Pierre et Marie Curie, 2002Google Scholar
  3. 3.
    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bouchitté, G., Buttazzo, G., Fragalà, I.: Convergence of Sobolev spaces on varying manifolds. J. Geom. Anal. 11, 399–422 (2001)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Brenier, Y.: A homogenized model for vortex sheets. Arch. Ration. Mech. Anal. 138, 319–353 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52, 411–452 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., Sobolevskii, A.: Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346, 501–524 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Brézis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree]. Masson, Paris, 1983 Théorie et applications. [Theory and applications]Google Scholar
  10. 10.
    Camalet, E.: Méthodes de couplage Euler-Lagrange pour les équations d'Euler-Poisson. PhD thesis, Université de Paris 6, 1995Google Scholar
  11. 11.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Evans, L.C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998Google Scholar
  13. 13.
    Evans, L.C.: Some new PDE method for weak KAM theory. Calc. Var. Partial Differential Equations 17, 159–177 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Evans, L.C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I Arch. Ration. Mech. Anal. 157, 1–33 (2001)CrossRefADSzbMATHGoogle Scholar
  15. 15.
    Fathi, A., Siconolfi, A.: Existence of C 1 critical subsolution of the Hamilton-Jacobi equation. Invent. Math. 155, 363–388 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the Universe by optimal mass transportation. Nature 417, 260–262 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983Google Scholar
  18. 18.
    Guionnet, A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244, 527–569 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35, 45–71 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969Google Scholar
  21. 21.
    McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differential Equations 26, 101–174 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Villani, C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.EPFL, SB-IMBLausanne

Personalised recommendations