Archive for Rational Mechanics and Analysis

, Volume 178, Issue 2, pp 287–299 | Cite as

Existence of Global Entropy Solutions of a Nonstrictly Hyperbolic System



In this paper we use the theory of compensated compactness coupled with some basic ideas of the kinetic formulation by Lions, Perthame, Souganidis & Tadmor [LPS, LPT] to establish an existence theorem for global entropy solutions of the nonstrictly hyperbolic system (1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caprino, S., Esposito, R., Marra, R., Pulvirenti, M.: Hydrodynamic limits of the Vlasov equation. Comm. Partial. Diff. Equations 18, 805–820 (1993)Google Scholar
  2. 2.
    Chueh, K.N., Conley, C.C., Smoller, J.A.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26, 373–411 (1977)CrossRefGoogle Scholar
  3. 3.
    DiPerna, R.J.: Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26, 1–28 (1973)Google Scholar
  4. 4.
    Earnshaw, S.: On the mathematical theory of sound. Philos. Trans. 150, 1150–1154 (1858)Google Scholar
  5. 5.
    Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 95–105 (1965)Google Scholar
  6. 6.
    James, F., Peng, Y.J., Perthame, B.: Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pure Appl. 74, 367–385 (1995)Google Scholar
  7. 7.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)Google Scholar
  8. 8.
    Lax, P.D.: Shock waves and entropy. In: Contributions to Nonlinear Functional Analysis, edited by E. Zarantonello. Academia Press, New York, 1971, 603–634Google Scholar
  9. 9.
    Lions, P.L., Perthame, B., Souganidis, P.E.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49, 599–638 (1996)CrossRefGoogle Scholar
  10. 10.
    Lions, P.L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-system. Commun. Math. Phys. 163, 415–431 (1994)CrossRefGoogle Scholar
  11. 11.
    Lu, Y.G.: Hyperboilc Conservation Laws and the Compensated Compactness Method, Vol. 128, Chapman and Hall, CRC Press, New York, 2002Google Scholar
  12. 12.
    Lu, Y.G.: Convergence of the viscosity method for some nonlinear hyperbolic systems. Proc. Royal Soc. Edinburgh 124A, 341–352 (1994)Google Scholar
  13. 13.
    Lu, Y.G.: Convergence of the viscosity method for nonstrictly hyperbolic conservation laws. Commun. Math. Phys. 150, 59–64 (1992)CrossRefGoogle Scholar
  14. 14.
    Lu, Y.G.: Some Results on General Ssystem of Isentropic Gas Dynamics. (In Russian) To appear in Diff. EquationsGoogle Scholar
  15. 15.
    Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa 5, 489–507 (1978)Google Scholar
  16. 16.
    Oelschläger, K.: On the connection between Hamiltonian many-particle systems and the hydrodynamical equation. Arch. Ration. Mech. Anal. 115, 297–310 (1991)CrossRefGoogle Scholar
  17. 17.
    Oelschläger, K.: An integro-differential equation modelling a Newtonian dynamics and its scaling limit. Arch. Ration. Mech. Anal. 137, 99–134 (1997)CrossRefGoogle Scholar
  18. 18.
    Tartar, T.: Compensated compactness and applications to partial differential equations. In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt symposium Vol. 4, R. J. Knops,(ed.) Pitman Press, London, 1979Google Scholar
  19. 19.
    Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons, New York, 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Science and Technology of China, Hefei National University of ColombiaBogota

Personalised recommendations