Point Defects in Nematic Gels: The Case for Hedgehogs

Article

Abstract

We address the question of whether a nematic gel is capable of sustaining a radially-symmetric point defect (or, hedgehog). We consider the special case of a gel cross-linked in a state where the mesogens are randomly aligned, and study the behavior of a spherical specimen with boundary subjected to a uniform radial displacement. For simplicity, we allow only for distortions in which the chain conformation is uniaxial with constant chain anisotropy and, thus, is determined by a unit director field. Further, we use the particular free-energy density function arising from the neo-classical molecular-statistical description of nematic gels. We find that the potential energy of the specimen is a nonconvex function of the boundary displacement and chain anisotropy. In particular, whenever the displacement of the specimen boundary involves a relative radial expansion in excess of 0.35, which is reasonably mild for gel-like substances, the theory predicts an energetic preference for states involving a hedgehog at the center of the specimen. Under such conditions, states in which the chain anisotropy is either oblate or prolate have total free-energy less than that of an isotropic comparison state. However, the oblate alternative always provides the global minimum of the total free-energy. The Cauchy stress associated with an energetically-preferred hedgehog is found to vanish in a relatively large region surrounding the hedgehog. The radial component of Cauchy stress is tensile and exhibits a non-monotonic character with a peak value an order of magnitude less than what would be observed in a specimen consisting of a comparable isotropic gel. The hoop component of Cauchy stress is also non-monotonic, but, as opposed to being purely tensile, goes between a tensile maximum to a compressive minimum at the specimen boundary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkelmann, H., Kock, H.-J., Rehage, G.: Liquid crystalline elastomers–-a new type of liquid crystalline material. Makromolekulare Chemie, Rapid Communications 2, 317–322 (1981)Google Scholar
  2. 2.
    de Gennes, P.G.: Réflexions sur un type de polymères nématiques. Comptes rendus de l’Académie des sciences Paris B281, 101–103 (1975)Google Scholar
  3. 3.
    Finkelmann, H.: Liquid crystals–-state of the art. Angewandte Chemie 100, 1019–1020 (1988)Google Scholar
  4. 4.
    Zentel, R.: Liquid crystalline elastomers. Angewandte Chemie Advanced Materials 101, 1437–1445 (1989)Google Scholar
  5. 5.
    Davis, F.J.: Liquid-crystalline elastomers. J. Mater. Chem. 3, 551–562 (1993)CrossRefGoogle Scholar
  6. 6.
    Warner, M., Terentjev, E.M.: Nematic elastomers–-A new state of matter. Prog. Polym. Sci. 21, 853–891 (1996)Google Scholar
  7. 7.
    Amigó-Melchior, A., Finkelmann, H.: A concept for bifocal contact- or intraocular lenses: liquid single crystal hydrogels (LSCH). Polym. Adv. Technol. 13, 363–369 (2002)CrossRefGoogle Scholar
  8. 8.
    Hébert, M., Kant, R., de Gennes, P.G.: Dynamics and thermodynamics of artificial muscles based on nematic gels. J. Physique I 7, 909–919 (1997)CrossRefGoogle Scholar
  9. 9.
    Finkelmann, H., Kim, S.T., Munoz, A., Palffy-Muhoray, P., Taheri, B.: Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers. Adv. Mater. 13, 1069–1072 (2001)CrossRefGoogle Scholar
  10. 10.
    Dierking, I.: Polymer network-stabilized liquid crystals. Adv. Mater. 12, 167–181 (2000)CrossRefGoogle Scholar
  11. 11.
    van Olphen, H.: An Introduction to Clay Colloid Chemistry. Wiley, New York, 1997Google Scholar
  12. 12.
    Jones, J.C., Graham, A., Bryan-Brown, G.P., Wood, E.P., Brett, P.: The Zenithal Bistable Device: A liquid crystal display with ultra-low power consumption. In: Proceedings of ASET International Forum on Low Power Displays, Tokyo (2000), 17–24Google Scholar
  13. 13.
    Meiboom, S., Sethna, J.P., Anderson, P.W., Brinkman, W.F.: Theory of the blue phase of cholesteric liquid crystals. Phys. Rev. Lett. 46, 1216–1219 (1981)CrossRefGoogle Scholar
  14. 14.
    Mottram, N.J., Sluckin, T.J.: Defect-induced melting in nematic liquid crystals. Liq. Cryst. 27, 1301–1304 (2000)CrossRefGoogle Scholar
  15. 15.
    Mottram, N.J., Hogan, S.J.: Disclination core structure and induced phase change in nematic liquid crystals. Philosophical Transactions of the Royal Society of London A 355, 2045–2064 (1997)Google Scholar
  16. 16.
    DeSimone, A., Dolzmann, G.: Material instabilities in nematic elastomers. Phys. D 136, 175–191 (2000)Google Scholar
  17. 17.
    Oseen, W.C.: The theory of liquid crystals. Transactions of the Faraday Society 29, 883–899 (1933)CrossRefGoogle Scholar
  18. 18.
    Zöcher, H.: The effect of a magnetic field on the nematic state. Transactions of the Faraday Society 29, 945–957 (1933)CrossRefGoogle Scholar
  19. 19.
    Frank, F.C.: On the theory of liquid crystals. Discussions of the Faraday Society 25, 19–28 (1958)CrossRefGoogle Scholar
  20. 20.
    Abramchuk, S.S., Khokhlov, A.R.: Molecular theory of high elasticity of polmer networks, with an accounting for orientational ordering of units. Dokl. Phys. Chem. 297, 1069–1072 (1988)Google Scholar
  21. 21.
    Warner, M., Gelling, K.P., Vilgis, T.A.: Theory of nematic networks. J. Chem. Phys. 88, 4008–4013 (1988)CrossRefGoogle Scholar
  22. 22.
    Carlson, D.E., Fried, E., Sellers, S.: Force-free states, relative strain and soft elasticity in nematic elastomers. J. Elasticity 69, 161–180 (2002)CrossRefGoogle Scholar
  23. 23.
    Ericksen, J.L.: Anisotropic fluids, Arch. Ration. Mech. Anal. 4, 231–237 (1960)Google Scholar
  24. 24.
    Ericksen, J.L.: Conservation laws for liquid crystals. Transactions of the Society of Rheology 5, 23–34 (1961)CrossRefGoogle Scholar
  25. 25.
    Mindlin, R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)CrossRefGoogle Scholar
  26. 26.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)CrossRefGoogle Scholar
  27. 27.
    Halperin, A.: Mean field theory of nematic order in gels. J. Chem. Phys. 85, 1081–1084 (1986)CrossRefGoogle Scholar
  28. 28.
    Conti, S., DeSimone, A., Dolzmann, G.: Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002)CrossRefGoogle Scholar
  29. 29.
    Olmsted, P.D.: Rotational invariance and Goldstone modes in nematic elastomers and gels. J. Physique II 4, 2215–2230 (1994)CrossRefGoogle Scholar
  30. 30.
    Bladon, P., Warner, M., Terentjev, E.M.: Orientational order in strained nematic networks. Macromolecules 27, 7067–7075 (1994)CrossRefGoogle Scholar
  31. 31.
    Wall, F.T., Flory, P.J.: Statistical thermodynamics of rubber elasticity. J. Chem. Phys. 19, 1435–1439 (1951)CrossRefGoogle Scholar
  32. 32.
    Warner, M.: New elastic behavior arising from the unusual constitutive relation of nematic solids. J. Mech. Phys. of Solids 47, 1355–1377 (1999)CrossRefGoogle Scholar
  33. 33.
    Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)Google Scholar
  34. 34.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984Google Scholar
  35. 35.
    Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge, 1989Google Scholar
  36. 36.
    Antman, S.S., Negrón-Marrero, R.: The remarkable nature of radially symmetric equilibrium states of aeleotropic nonlinearly elastic bodies. J. Elasticity 18, 131–164 (1987)CrossRefGoogle Scholar
  37. 37.
    Fried, E., Todres, R.E.: Prediction of disclinations in nematic elastomers. In: Proceedings of the National Academy of Sciences of the United States of America 98, 14773–14777 (2001)CrossRefGoogle Scholar
  38. 38.
    Fried, E., Todres, R.E.: Disclinated states in nematic elastomers. J. Mech. Phys. Solids 50, 2691–2716 (2002)CrossRefGoogle Scholar
  39. 39.
    Fried, E., Todres, R.E.: Normal-stress differences and the detection of disclinations in nematic elastomers. J. Polym. Sci. B: Poly. Phys. 40, 2098–2106 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of Washington in St. LouisSt. LouisUSA

Personalised recommendations