Archive for Rational Mechanics and Analysis

, Volume 176, Issue 3, pp 363–414

Local Minimizers and Quasiconvexity – the Impact of Topology



The aim of this paper is to discuss the question of existence and multiplicity of strong local minimizers for a relatively large class of functionals Open image in new window : Open image in new window from a purely topological point of view. The basic assumptions on Open image in new window are sequential lower semicontinuity with respect to W1,p-weak convergence and W1,p-weak coercivity, and the target is a multiplicity bound on the number of such minimizers in terms of convenient topological invariants of the manifolds Open image in new window and Open image in new window.

In the first part of the paper, we focus on the case where Open image in new window is non-contractible and proceed by establishing a link between the latter problem and the question of enumeration of homotopy classes of continuous maps from various skeleta of Open image in new window into Open image in new window. As this in turn can be tackled by the so-called obstruction method, it is evident that our results in this direction are of a cohomological nature.

The second part is devoted to the case where Open image in new window=ℝN and Open image in new window is a bounded smooth domain. In particular we consider integrals

Open image in new window

where the above assumptions on Open image in new window can be verified when the integrand F is quasiconvex and pointwise p-coercive with respect to the gradient argument. We introduce and exploit the notion of a topologically non-trivial domain and under this establish the first existence and multiplicity result for strong local minimizers of Open image in new window that in turn settles a longstanding open problem in the multi-dimensional calculus of variations as described in [6].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)Google Scholar
  2. 2.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)Google Scholar
  3. 3.
    Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium 1, (Ed. Knops, R.J.), Pitman, London, 1977Google Scholar
  4. 4.
    Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edin. A 88, 315–328 (1981)Google Scholar
  5. 5.
    Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)Google Scholar
  6. 6.
    Ball, J.M.: Some open problems in elasticity. In: Geometry, mechanics and dynamics, Springer, New York, 3–59 (2002)Google Scholar
  7. 7.
    Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)Google Scholar
  8. 8.
    Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 160, 153–206 (1991)Google Scholar
  9. 9.
    Birman, J.S.: Braids, links and mapping class groups. Annals of Mathematics studies 82, Princeton University Press, 1975Google Scholar
  10. 10.
    Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics 139, Springer-Verlag, 1993Google Scholar
  11. 11.
    Brezis, H., Li, Y.Y.: Topology and Sobolev spaces. J. Funct. Anal. 183, 321–369 (2001)Google Scholar
  12. 12.
    Brezis, H., Li, Y.Y., Mironescu, P., Nirenberg, L.: Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13, 181–190 (1991)Google Scholar
  13. 13.
    Brezis, H., Nirenberg, L.: Degree theory and BMO, Parts I & II: Compact manifolds without boundaries & Compact manifolds with boundaries. Selecta Math. 1 & 2, 197–263 & 309–368 (1995) & (1996)Google Scholar
  14. 14.
    Casson, A.J., Bleiler, S.A.: Automorphisms of surfaces after Nielsen and Thurston. LMSST 9, Cambridge University Press, 1988Google Scholar
  15. 15.
    Chang, K.C.: Infinite dimensional Morse theory and multiple solution problems. Progress in Nonlinear Differential Equations and their Applications 6, Bikhäuser, 1991Google Scholar
  16. 16.
    Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences 78, Springer-Verlag, 1988Google Scholar
  17. 17.
    Dacorogna, B., Fonseca, I., Maly, J., Trivisa, K.: Manifold constrained variational problems. Calc. Var. & PDEs. 9, 185–206 (1999)Google Scholar
  18. 18.
    Dal Maso, G.: Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications 8, Bikhäuser, 1992Google Scholar
  19. 19.
    De Giorgi, E.: Convergence problems for functionals and operators. In: Proc. Int. meeting on recent methods in nonlinear analysis, (Eds. De Giorgi, E. et. al.), 223–244 (1979)Google Scholar
  20. 20.
    Dieudonné, J.: A history of Algebraic and Differential Topology 1900–1960. Birkhäuser, 1989Google Scholar
  21. 21.
    Dugundji, J.: Topology. Allyn and Bacon Series in Advanced Mathematics, 1966Google Scholar
  22. 22.
    Duzaar, F., Kuwert, E.: Minimization of conformally invariant energies in homotopy classes. Calc. Var. & PDEs 6, 285–313 (1998)Google Scholar
  23. 23.
    Eells, J., Lemaire, L.: Two reports on harmonic maps, Bull. Lond. Math. Soc. 10 & 20, 1–68 & 385–524 (1978) & (1988)Google Scholar
  24. 24.
    Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology 15, 263–266 (1976)Google Scholar
  25. 25.
    Eilenberg, S.: Cohomology and continuous mappings, Ann. of Math. 40, 231–251 (1940)Google Scholar
  26. 26.
    Evans, L.C., Gariepy, R.: Some remarks concerning quasiconvexity and strong convergence. Proc. Roy. Soc. Edin. A 106, 53–61 (1987)Google Scholar
  27. 27.
    Federer, H.: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc. 82, 340–361 (1956)Google Scholar
  28. 28.
    Federer, H.: Geometric measure theory. Graduate Texts in Mathematics 153, Springer-Verlag, 1969.Google Scholar
  29. 29.
    Giaquinta, M., Modica, G., Souček, J.: The gap phenomenon for variational integrals in Sobolev spaces. Proc. Roy. Soc. Edin. A 120, 93–98 (1992)Google Scholar
  30. 30.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations, Vols. I & II, A series of Modern Surveys in Mathematics 38, Springer, 1997Google Scholar
  31. 31.
    Gottlieb, D.H.: A certain subgroup of the fundamental group. Amer. J. Math. 87, 840–856 (1965)Google Scholar
  32. 32.
    Griffiths, H.B.: The fundamental group of a surface, and a theorem of Shreier. Acta Math. 110, 1–17 (1963)Google Scholar
  33. 33.
    Graves, L.M.: The Weierstrass condition for multiple integral variational problems. Duke Math. J. 5, 656–660 (1939)Google Scholar
  34. 34.
    Hajlasz, P.: Approximation of Sobolev mappings. Nonlinear Analysis TMA 22, 1579–1591 (1994)Google Scholar
  35. 35.
    Hansen, V.L.: The homotopy problem for the components in the space of maps on the n-sphere. Quart. J. Math. Oxford 25, 313–321 (1974)Google Scholar
  36. 36.
    Hansen, V.L.: Spaces of maps into Eilenberg-MacLane spaces. Can. J. Math. 33, 782–785 (1981)Google Scholar
  37. 37.
    Hansen, V.L.: The homotopy groups of a space of maps between oriented closed surfaces. Bull. Lond. Math. Soc. 15, 360–364 (1983)Google Scholar
  38. 38.
    Hang, F., Lin, F.H.: Topology of Sobolev mappings. Math. Res. Lett. 8, 321–330 (2001)Google Scholar
  39. 39.
    Hopf, H.: Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Math. Ann. 96, 209–224 (1927)Google Scholar
  40. 40.
    Hu, S.T.: Concerning the homotopy groups of the components of the mapping space Open image in new window Indag. Math. 8, 623–629 (1946)Google Scholar
  41. 41.
    Hu, S.T.: Homotopy theory. Academic Press, New York, 1959Google Scholar
  42. 42.
    Hurewicz, W.: Beiträge zur topologie der deformationen. Verh. Nedel. Akad. Wetensch. 38 & 39, 112–119, 521–528 & 117–126, 215–224 (1935) & (1936)Google Scholar
  43. 43.
    Hurewicz, W.: Collected works of Witold Hurewicz. (Ed. Kuperberg, K.), American Mathematical Society, 1995Google Scholar
  44. 44.
    Hüsseinov, F.: Weierstrass condition for the general basic variational problem. Proc. Roy. Soc. Edin. A 125, 801–806 (1995)Google Scholar
  45. 45.
    John, F.: Uniqueness of nonlinear equilibrium for prescribed boundary displacement and sufficiently small strains. Comm. Pure Appl. Math. 25, 617–634 (1972)Google Scholar
  46. 46.
    Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)Google Scholar
  47. 47.
    Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)Google Scholar
  48. 48.
    Kneser, H.: Die Deformationssätze der einfach zusammenhängenden Flächen. Math. Z. 25, 362–372 (1926)Google Scholar
  49. 49.
    Koh, S.S.: Note on the properties of the components of the mapping spaces Open image in new window Proc. Amer. Math. Soc. 11, 896–904 (1960)Google Scholar
  50. 50.
    Knops, R., Stuart, C.: Quasiconvexity and uniqueness of equilibrium solutions in non-linear elasticity. Arch. Rational Mech. Anal. 86, 233–249 (1984)Google Scholar
  51. 51.
    Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edin. A 111, 69–84 (1989)Google Scholar
  52. 52.
    Kristensen, J., Taheri, A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Max-Planck-Institute MIS (Leipzig) Preprint-Nr. 59, 2001Google Scholar
  53. 53.
    Lemaire, L.: Applications harmoniques des surfaces Riemanniennes. J. Diff. Geom. 13, 51–87 (1978)Google Scholar
  54. 54.
    Lusternik, L., Schnirelman, L.: Méthodes topologiques dans les problémes variationelles. Actualities Sci. Ind. 188, 1934Google Scholar
  55. 55.
    Manfredi, J.: Weakly monotone functions. J. Geom. Anal. 4, 393–402 (1994)Google Scholar
  56. 56.
    Meyers, N.G.: Quasiconvexity and lower semicontinuity of multiple integrals of any order. Trans. Amer. Math. Soc. 119, 225–249 (1965)Google Scholar
  57. 57.
    Milnor, J.: Morse theory. Annals of Mathematics studies, 51, Princeton University Press, 1963Google Scholar
  58. 58.
    Morrey, C.B.: The problem of Plateau on a Riemannian manifold. Ann. of Math. 49, 807–851 (1948)Google Scholar
  59. 59.
    Morrey, C.B.: Multiple integrals in the calculus of variations. Graduate Texts in Mathematics 130, Springer-Verlag, 1966Google Scholar
  60. 60.
    Müller, S., Tang, Q., Yan, B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré, Analyse non linéaire 11, 217–243 (1994)Google Scholar
  61. 61.
    Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131, 1–66 (1995)Google Scholar
  62. 62.
    Müller, S., Spector, S.J., Tang, Q.: Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal. 27, 959–976 (1996)Google Scholar
  63. 63.
    Olum, P.: Obstructions to extensions and homotopies. Ann. of Math. 52, 1–50 (1950)Google Scholar
  64. 64.
    Olum, P.: Mappings to manifolds and the notion of degree. Ann. of Math. 58, 458–480 (1953)Google Scholar
  65. 65.
    Palais, R.S.: Morse theory on Hilbert manifolds. Topology. 2, 299–340 (1963)Google Scholar
  66. 66.
    Palais, R.S.: Lusternik Schnirelman theory on Banach manifolds. Topology. 5, 115–132 (1966)Google Scholar
  67. 67.
    Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology. 5, 1–16 (1966)Google Scholar
  68. 68.
    Palais, R.S.: Foundations of global non-linear analysis. Benjamin, New York, 1968Google Scholar
  69. 69.
    Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Amer. Math. Soc. 70, 165–171 (1964)Google Scholar
  70. 70.
    Post, K., Sivaloganathan, J.: On homotopy conditions and the existence of multiple equilibria in finite elasticity. Proc. Roy. Soc. Edin. A 127, 595–614 (1997)Google Scholar
  71. 71.
    Rubinstein, J., Sternberg, P.: Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys. 179, 257–263 (1996)Google Scholar
  72. 72.
    Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. of Math. 113, 1–24 (1981)Google Scholar
  73. 73.
    Smale, S.: Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10, 621–626 (1959)Google Scholar
  74. 74.
    Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100, 105–127 (1988)Google Scholar
  75. 75.
    Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18, 253–268 (1983)Google Scholar
  76. 76.
    Schwartz, J.T.: Nonlinear functional analysis. Gordon and Breach Science Publishers, 1969Google Scholar
  77. 77.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)Google Scholar
  78. 78.
    Taheri, A.: Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations. Proc. Roy. Soc. Edin. A 131, 155–184 (2001)Google Scholar
  79. 79.
    Taheri, A.: Strong versus weak local minimizers for the perturbed Dirichlet functional. Calc. Var. & PDEs 15, 215–235 (2002)Google Scholar
  80. 80.
    Taheri, A.: On critical points of functionals with polyconvex integrands. J. Convex Anal. 9, 55–72 (2002)Google Scholar
  81. 81.
    Taheri, A.: Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations. To appear in Proc. Amer. Math. Soc. 2003Google Scholar
  82. 82.
    Taheri, A.: On Artin’s braid group and polyconvexity in the calculus of variations. To appear in J. Lond. Math. Soc. 2003Google Scholar
  83. 83.
    Uhlenbeck, K.: Morse theory on Banach Manifolds. J. Funct. Anal. 10, 430–445 (1972)Google Scholar
  84. 84.
    Uhlenbeck, K.: Morse theory by perturbation methods with applications to harmonic maps. Trans. Amer. Math. Soc. 267, 569–583 (1981)Google Scholar
  85. 85.
    Vodopyanov, S.K., Gol’dshtein, V.M.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Siberian Math. J. 17, 515–531 (1977)Google Scholar
  86. 86.
    White, B.: Infima of energy functionals in homotopy classes of mappings. J. Diff. Geom. 23, 127–142 (1986)Google Scholar
  87. 87.
    White, B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math. 160, 1–17 (1988)Google Scholar
  88. 88.
    Whitehead, G.W.: On products in homotopy groups. Ann. of Math. 47, 460–475 (1946)Google Scholar
  89. 89.
    Whitehead, G.W., Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, 1978.Google Scholar
  90. 90.
    Whitehead, J.H.C.: On certain theorems of G.W. Whitehead. Ann. of Math. 58, 418–428 (1953)Google Scholar
  91. 91.
    Whitney, H.: The maps of an n-complex into an n-sphere. Duke Math. J. 3, 51–55 (1937)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordEngland, U.K

Personalised recommendations