Archive for Rational Mechanics and Analysis

, Volume 176, Issue 2, pp 165–225 | Cite as

Quasistatic Crack Growth in Nonlinear Elasticity

  • Gianni Dal Maso
  • Gilles A. Francfort
  • Rodica Toader
Article

Abstract.

In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [19]. We consider the case of n-dimensional nonlinear elasticity, for an arbitrary n≧1, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7) 3, 857–881 (1989)Google Scholar
  2. 2.
    Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111, 291–322 (1990)Google Scholar
  3. 3.
    Ambrosio, L.: On the lower semicontinuity of quasi-convex functionals in SBV. Nonlinear Anal. 23, 405–425 (1994)Google Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford, 2000Google Scholar
  5. 5.
    Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam-London; American Elsevier, New York, 1973Google Scholar
  6. 6.
    Brezis, H.: Convergence in Open image in new window and in L1 under strict convexity. Boundary value problems for partial differential equations and applications, 43–52, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993Google Scholar
  7. 7.
    Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Rational Mech. Anal. 167, 211–233 (2003)Google Scholar
  8. 8.
    Dacorogna, B.: Direct methods in the calculus of variations. Springer-Verlag, Berlin, 1989Google Scholar
  9. 9.
    Dal Maso, G., Francfort, G.A., Toader, R.: Quasi-static crack growth in finite elasticity. Preprint SISSA, Trieste, 2004 (http://www.sissa.it/fa/)
  10. 10.
    Dal Maso, G., Francfort, G.A., Toader, R.: Quasi-static crack evolution in brittle fracture: the case of bounded solutions. Calculus of Variations. Topics from the mathematical heritage of Ennio De Giorgi. Quaderni di Matematica, Dipartimento di Matematica della Seconda Università di Napoli, 2004, to appear (http://www.sissa.it/fa/)
  11. 11.
    Dal Maso, G., Giacomini, A., Ponsiglione, M.: Some qualitative properties of solutions to variational models for quasistatic crack growth. In preparationGoogle Scholar
  12. 12.
    Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal. 162, 101–135 (2002)Google Scholar
  13. 13.
    De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82, 199–210 (1988)Google Scholar
  14. 14.
    De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108, 195–218 (1989)Google Scholar
  15. 15.
    Doob, J.L.: Stochastic processes. Wiley, New York, 1953Google Scholar
  16. 16.
    Federer, H.: Geometric measure theory. Springer-Verlag, Berlin, 1969Google Scholar
  17. 17.
    Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56, 1465–1500 (2003)Google Scholar
  18. 18.
    Francfort, G.A., Marigo, J.-J.: Stable damage evolution in a brittle continuous medium. European J. Mech. A Solids 12, 149–189 (1993)Google Scholar
  19. 19.
    Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)Google Scholar
  20. 20.
    Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser. A 221, 163–198 (1920)Google Scholar
  21. 21.
    Hahn, H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)Google Scholar
  22. 22.
    Henstock, R.: A Riemann-type integral of Lebesgue power. Canad. J. Math. 20, 79–87 (1968)Google Scholar
  23. 23.
    Krasnosel’skii, M.A.: Topological methods in the theory of nonlinear integral equations. Pergamon Press, Oxford, 1964Google Scholar
  24. 24.
    Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999)Google Scholar
  25. 25.
    Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations, 2004, to appear.Google Scholar
  26. 26.
    Mawhin, J.: Analyse. Fondements, techniques, évolution. Second edition. Accès Sciences. De Boeck Université, Brussels, 1997Google Scholar
  27. 27.
    Mielke, A., Theil, F.: A mathematical model for rate-independent phase transformations with hysteresis. In: Alber, H.-D., Balean, R., Farwig, R. (eds.), Proceedings of the Workshop on ‘‘Models of continuum mechanics in analysis and engineering’’ (1999), Shaker-Verlag, pp. 117–129Google Scholar
  28. 28.
    Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137–177 (2002)Google Scholar
  29. 29.
    Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967Google Scholar
  30. 30.
    Saks, S.: Sur les fonctions d’intervalle. Fund. Math. 10, 211–224 (1927)Google Scholar
  31. 31.
    Visintin, A.: Strong convergence results related to strict convexity. Commun. Partial Differential Equations 9, 439–466 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gianni Dal Maso
    • 1
  • Gilles A. Francfort
    • 2
  • Rodica Toader
    • 3
  1. 1.SISSATriesteItaly
  2. 2.LPMTMUniversité Paris 13VilletaneuseFrance
  3. 3.Dipartimento di Ingegneria Civile UdineItaly

Personalised recommendations