Archive for Rational Mechanics and Analysis

, Volume 171, Issue 3, pp 349–416

Convexity of Stokes Waves of Extreme Form



Existence is established of a piecewise-convex, periodic, planar curve S below which is defined a harmonic function which simultaneously satisfies prescribed Dirichlet and Neumann boundary conditions on S. In hydrodynamics this corresponds to the existence of a periodic Stokes wave of extreme form which has a convex profile between consecutive stagnation points where there is a corner with a contained angle of 120°


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amick, C.J., Fraenkel, L.E.: On the behaviour near crest of waves of extreme form. Trans. Am. Math.Soc. 299, 273–298 (1987)MathSciNetMATHGoogle Scholar
  2. 2.
    Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)MathSciNetMATHGoogle Scholar
  3. 3.
    Buffoni, B. Toland, J.F.: Analytic Theory of global Bifurcation – an Introduction. Princeton: Princeton University Press, 2003Google Scholar
  4. 4.
    Buffoni, B., Dancer, E.N., Toland, J.F.: Sur les ondes de Stokes et une conjecture de Levi-Civita. Comptes Rendus Acad. Sci. Paris, Série I 326, 1265–1268 (1998)Google Scholar
  5. 5.
    Buffoni, B., Dancer, E.N., Toland, J.F.: The regularity and local bifurcation of steady periodic water waves. Arch. Ration. Mech. Anal. 152, 207–240 (2000)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Buffoni, B., Dancer, E.N., Toland, J.F.: The sub-harmonic bifurcation of Stokes waves. Arch. Ration. Mech. Anal. 152, 241–271 (2000)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Chandler G.A., Graham, I.G.: The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal. 30, 1041–1065 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Keady, G., Norbury, J.: On the existence theory for irrotational water waves. Math. Proc. Camb. Phil. Soc. 83, 137–157 (1978)MATHGoogle Scholar
  9. 9.
    Lewy, H.: A note on harmonic functions and a hydrodynamic application. Proc. Am. Math. Soc. 3, 111–113 (1952)MathSciNetMATHGoogle Scholar
  10. 10.
    McLeod, J.B.: The asymptotic behaviour near the crest of waves of extreme form. Trans. Am. Math.Soc. 299, 299–302 (1987)MathSciNetMATHGoogle Scholar
  11. 11.
    McLeod, J.B.: The Stokes and Krasovskii conjectures for the wave of greatest height. Stud. Appl. Math. 98, 311–334 (1997) (In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic))MathSciNetMATHGoogle Scholar
  12. 12.
    Milne-Thompson, L.M.: Theoretical Hydrodynamics, 6th ed., Macmillan, London, 1968Google Scholar
  13. 13.
    Nekrasov, A.I.: On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3 (1921)Google Scholar
  14. 14.
    Plotnikov, P.I.: A proof of the Stokes conjecture in the theory of surface waves. Dinamika Splosh. Sredy 57, 41–76 (1982) (In Russian. English translation Stud. Appl. Math. 3, 217–244 (2002))MathSciNetMATHGoogle Scholar
  15. 15.
    Plotnikov, P.I., Toland, J.F.: The Fourier coefficients of Stokes waves. In: Nonlinear Problems in Mathematical Physics and Related Topics. In honour of Professor O.A.Ladyzhenskaya, Kluwer, International Mathematical Series, 2002Google Scholar
  16. 16.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. New Jersey: Prentice-Hall, 1967Google Scholar
  17. 17.
    Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)MATHGoogle Scholar
  18. 18.
    Shargorodsky, E., Toland, J.F.: Complex methods for Bernoulli free boundary problems in-the-large. In preparationGoogle Scholar
  19. 19.
    Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Mathematical and Physical Papers. Vol. I, Cambridge, 1880, pp. 225–228Google Scholar
  20. 20.
    Toland, J.F.: Stokes waves, Topological Methods in Nonlinear Anal. 7, 1–48 (1996); 8, 412–414 (1997)Google Scholar
  21. 21.
    Toland, J.F.: On the existence of a wave of greatest height and Stokes’s conjecture. Proc. Roy. Soc. London Ser. A 363, 469–485 (1978)MathSciNetMATHGoogle Scholar
  22. 22.
    Williams, J.M.: Limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. A 302, 139–188 (1981)MathSciNetMATHGoogle Scholar
  23. 23.
    Williams, J.M.: Near-limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. A 314, 353–377 (1985)MATHGoogle Scholar
  24. 24.
    Zygmund, A.: Trigonometric Series I & II. Cambridge: Cambridge University Press, 1959Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Lavryentyev Institute of HydodynamicsRussian Academy of SciencesRussia
  2. 2.Department of Mathematical SciencesUniversity of BathUnited Kingdom

Personalised recommendations