Archive for Rational Mechanics and Analysis

, Volume 171, Issue 2, pp 151–218 | Cite as

Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential

  • Frédéric Hérau
  • Francis NierEmail author


We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high-degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten Laplacian, with detailed applications.


Cauchy Problem Positive Eigenvalue Homogeneous Function Exponential Trend Detailed Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques (avec une préface de D. Bakry et M. Ledoux). Panoramas & Synthèses, SMF, No 10, 2000Google Scholar
  2. 2.
    Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians. Volume 135 of Progress in Mathematics. Birkhäuser, Basel-Boston-Berlin, 1996Google Scholar
  3. 3.
    Beals, R.: Weighted distributions spaces and pseudodifferential operators. J. An. Math. 39, 130–187 (1981)Google Scholar
  4. 4.
    Bony, J.M., Chemin, J.Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. SMF 122, 77–118 (1994)Google Scholar
  5. 5.
    Bony, J.M., Lerner, N.: Quantification asymptotique et microlocalisation d’ordre supérieur I. Ann. Scient. Ec. Norm. Sup., 4 e série 22, 377–433 (1989)Google Scholar
  6. 6.
    Bouchut, F., Dolbeault, F.: On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Diff. Int. Eqs. 8, 487–514 (1995)Google Scholar
  7. 7.
    Boulton, L.S.: Non-self-adjoint harmonic oscillator, compact semigroups, and pseudospectra. J. Operator Theory 47, 413–429 (2002)Google Scholar
  8. 8.
    Crouzeix, M., Delyon, B.: Some estimates for analytic functions of band or sectorial operators. To appear in Archiv der Mathematik Google Scholar
  9. 9.
    Cycon, H.L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Text and Monographs in Physics. Springer-Verlag, 1987Google Scholar
  10. 10.
    Davies, E.B.: One-parameter semigroups. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1980Google Scholar
  11. 11.
    Davies, E.B.: Pseudospectra, the harmonic oscillator and complex resonances. R. Soc. London Ser. A Math. Phys. Eng. Sci. 455, 585–599 (1999)Google Scholar
  12. 12.
    Davies, E.B.: Semi-classical states for non self-adjoint Schrödinger operators. Comm. Math. Phys. 200, 35–41 (1999)Google Scholar
  13. 13.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54, 1–42 (2001)Google Scholar
  14. 14.
    Dunford, N., Schwartz, J.T.: Linear operators. Part I. John Wiley & Sons Inc., New York, 1988Google Scholar
  15. 15.
    Eckmann, J.P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys. 212, 105–164 (2000)Google Scholar
  16. 16.
    Eckmann, J.P., Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235, 233–253 (2003)Google Scholar
  17. 17.
    Eckmann, J.P., Pillet, C.A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys. 201, 657–697 (1999)Google Scholar
  18. 18.
    Georgescu, V., Gérard, C.: On the virial theorem in quantum mechanics. Comm. Math. Phys. 208, 275–281 (1999)Google Scholar
  19. 19.
    Helffer, B.: Semi-classical analysis for the Schrödinger operator and applications. Volume 1336 of Lect. Notes in Mathematics. Springer-Verlag, Berlin, 1988Google Scholar
  20. 20.
    Helffer, B., Mohamed, A.: Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble) 38, 95–112 (1988)Google Scholar
  21. 21.
    Helffer, B., Mohamed, A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138, 40–81 (1996)Google Scholar
  22. 22.
    Helffer, B., Nier, F.: Criteria to the Poincaré inequality for some Dirichlet forms in dimension dq 2. Int. Math. Res. Not. 22, 1199–1223 (2003)Google Scholar
  23. 23.
    Helffer, B., Nourrigat, J.: Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985Google Scholar
  24. 24.
    Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique, IV, étude du complexe de Witten. Comm. Partial Diff. Eqs. 10, 245–340 (1985)Google Scholar
  25. 25.
    Holley, R., Kusuoka, S., Stroock, D.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83, 333–350 (1989)Google Scholar
  26. 26.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)Google Scholar
  27. 27.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators 3. Springer Verlag, 1985Google Scholar
  28. 28.
    Hörmander, L.: Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219, 413–449 (1995)Google Scholar
  29. 29.
    Johnsen, J.: On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb’s inequality. Int. Eqs. Oper. Theor. 36, 288–324 (2000)Google Scholar
  30. 30.
    Kohn, J.J.: Lectures on degenerate elliptic problems. In: Pseudodifferential operator with applications (CIME 1977), Liguori, Naples, 1978, pp. 89–151Google Scholar
  31. 31.
    Métivier, G.: équations aux dérivées partielles sur les groupes de Lie nilpotents. In: Bourbaki Seminar, Vol. 1981/1982, Soc. Math. France, Paris, 1982, pp. 75–99Google Scholar
  32. 32.
    Nelson, E.: Dynamical theories of Brownian motion. Princeton, NJ: Princeton University Press, 1967Google Scholar
  33. 33.
    Nourrigat, J.: Systèmes sous-elliptiques. In: Séminaire sur les équations aux dérivées partielles 1986–1987, pages Exp. No. V, 14. école Polytech., Palaiseau, 1987Google Scholar
  34. 34.
    Nourrigat, J.: Systèmes sous-elliptiques, II. Invent. Math. 104, 377–400 (1991)Google Scholar
  35. 35.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Volume~2. Acad. Press, 1975Google Scholar
  36. 36.
    Rey-Bellet, L., Thomas, L.E.: Asymptotic Behavior of Thermal Nonequilibrium Steady States for a Driven Chain of Anharmonic Oscillators. Comm. Math. Phys. 215, 1–24 (2000)Google Scholar
  37. 37.
    Rey-Bellet, L., Thomas, L.E.: Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics. Comm. Math. Phys. 225, 305–329 (2000)Google Scholar
  38. 38.
    Rey-Bellet, L., Thomas, L.E.: Fluctuations of the Entropy Production in Anharmonic Chains. Ann. Henri Poicaré 3, 483–502 (2002)zbMATHGoogle Scholar
  39. 39.
    Riesz, F., Sz.-Nagy, B.: Functional analysis. New York: Dover Publications Inc., 1990Google Scholar
  40. 40.
    Risken, H.: The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989. Methods of solution and applicationsGoogle Scholar
  41. 41.
    Robert, D.: Autour de l’approximation semi-classique. Volume~68 of Progress in Mathematics. Birkhaüser, 1987Google Scholar
  42. 42.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)Google Scholar
  43. 43.
    Sternberg, S.: Lectures on differential geometry. Chelsea Publishing Co., New York, second edition, 1983Google Scholar
  44. 44.
    Talay, D.: Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations. In: C. Soize R. Bouc, (eds.), Progress in Stochastic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., 1999, pp. 139–169Google Scholar
  45. 45.
    Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure and discretization by the implicit Euler scheme. Markov Processes and Related Fields 8, 163–198 (2002)Google Scholar
  46. 46.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics, Vol. 1, S. Friedlander and D. Serre, (eds.). North-Holland, 2002Google Scholar
  47. 47.
    Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)Google Scholar
  48. 48.
    Zworski, M.: Numerical linear algebra and solvability of partial differential equations. Comm. Math. Phys. 229, 293–307 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques UFR Sciences exactes et naturellesUniversité de ReimsReims cedex 9FRANCE
  2. 2.IRMAR, UMR-CNRS 6625 Campus de beaulieuUniversité de RennesFRANCE

Personalised recommendations