Advertisement

Archive for Rational Mechanics and Analysis

, Volume 170, Issue 3, pp 211–245 | Cite as

Determination of the Closure of the Set of Elasticity Functionals

  • M. Camar-EddineEmail author
  • P. Seppecher
Article

Abstract

We determine the closure for Mosco-convergence in L 2 (Ω,ℝ3) of the set of elasticity functionals. We prove that this closure coincides with the set of all non-negative lower-semicontinuous quadratic functionals which are objective, i.e., which vanish for rigid motions. The result is still valid if we consider only the set of isotropic elasticity functionals which have a prescribed Poisson coefficient. This shows that a very large family of materials can be reached when homogenizing a composite material with highly contrasted rigidity coefficients.

Keywords

Composite Material Large Family Rigid Motion Isotropic Elasticity Poisson Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alibert, J. J., dell’Isola, F., Seppecher, P.: Truss Modular beams the Deformation energy of which depends on higher Displacement gradients. Math. Mech. Solids 8, 51–73 (2003)Google Scholar
  2. 2.
    Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, 146, Springer-Verlag, New York (2002)Google Scholar
  3. 3.
    Attouch, H.: Variational Convergence for Functions and Operators. Pitman, London (1984)Google Scholar
  4. 4.
    Avellaneda, M.: Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47, 1216–1228 (1987)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bellieud, M., Bouchitté, G.: Homogenization of elliptic problems in a fiber reinforced structure: Non local effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 407–436 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bellieud, M., Bouchitté, G.: Homogénéisation en présence de fibres de grandes conductivité. C.R. Acad. Sci. Paris Série I 323, 1135–1140 (1996)zbMATHGoogle Scholar
  7. 7.
    Beurling, A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A. 45, 208–215 (1959)zbMATHGoogle Scholar
  8. 8.
    Camar-Eddine, M., Seppecher, P.: Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12, 1153–1176 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Camar-Eddine, M., Seppecher, P.: Non-local interactions resulting from the homogenization of a linear diffusive medium. C.R. Acad. Sci. Paris Série I 332, 485–490 (2001)zbMATHGoogle Scholar
  10. 10.
    Camar-Eddine, M.: Closure of the set of diffusion functionals and that of elasticity with respect to Mosco-convergence. Thesis of Toulon University, France. March 2002Google Scholar
  11. 11.
    Cherkaev, A. V.: Variational Methods for Structural Optimization. Applied Mathematical Sciences, 140. Springer-Verlag, New York (2000)Google Scholar
  12. 12.
    Dal Maso, G.: An introduction to Γ-convergence. Progress in linear diff. eq. and their app., Birkhäuser, Boston (1993)Google Scholar
  13. 13.
    De Giorgi, E.: Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)zbMATHGoogle Scholar
  14. 14.
    Fukushima, M.: Dirichlet Forms and Markov Processes. North Holland (1980)Google Scholar
  15. 15.
    Francfort, G., Murat, F.: Homogenization and Optimal Bounds in Linear Elasticity. Arch. Rat. Mech. Anal. 94, 307–334 (1986)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)zbMATHGoogle Scholar
  17. 17.
    Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, Berlin (1994)Google Scholar
  18. 18.
    Milton, G. W.: Composite materials with Poisson’s ratios close to -1. J. Mech. Phys. Solids 40, 1105–1137 (1992)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Milton, G. W.: The theory of composites. Cambridge University Press, Cambridge, U.K (2002)Google Scholar
  20. 20.
    Milton, G. W., Cherkaev, A. V.: Which elasticity tensors are realizable?. ASME J. Engin. Mater. Techn. 117, 483–493 (1995)Google Scholar
  21. 21.
    Milton, G. W., Kohn, R. V.: Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36, 597–629 (1988)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mosco, U.: Approximation of the solutions of some variational inequalities. Ann. Scuola Normale Sup. Pisa 21, 373–394 (1967)zbMATHGoogle Scholar
  23. 23.
    Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123, 368–421 (1994)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Murat, F.: A strange term brought from somewhere else. Nonlinear differential equations and their applications. Collège de France Seminar, Vol II, pp. 98–138, 389–390, (Paris, 1979/1980), Res. Notes in Math. 60, Pitman, Boston, Mass.-London (1982)Google Scholar
  25. 25.
    Murat, F., Tartar, L.: Calculus of variations and homogenization. Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differential Equations Appl. 31, Birkhauser Boston, Boston, MA, pp. 139–173 (1997)Google Scholar
  26. 26.
    Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257 (1997)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Inter. J. Solids and Struct. 31, 2313–2329 (1994)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Tartar, L.: Estimations de coefficients homogénéisés: Computing methods in applied sciences and engineering. R. Glowinski, J. L. Lions (eds), Lecture Notes in Math. 704, Springer Verlag, pp. 364–373 (1978)Google Scholar
  29. 29.
    Tartar, L.: Estimations fines des coefficients homogénéisés. Ennio De Giorgi Colloquium. Edited by P. Krée, Res. Notes in Math. 125, Pitman, London, pp. 168-187 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Non Linéaire Appliquée et ModélisationUniversité de Toulon et du VarLa Garde CedexFrance

Personalised recommendations