Genetic variants in circTUBB interacting with smoking can enhance colorectal cancer risk

  • Ke Zhang
  • Shuwei Li
  • Dongying Gu
  • Kaili Xu
  • Rui Zheng
  • Junyi Xin
  • Yixuan Meng
  • Shuai Ben
  • Haiyan Chu
  • Zhengdong Zhang
  • Yongqian Shu
  • Mulong DuEmail author
  • Lingxiang LiuEmail author
  • Meilin WangEmail author
Genotoxicity and Carcinogenicity


Circular RNAs (circRNAs) are an intriguing class of regulatory RNAs involved in the tumorigenesis of many cancers, including colorectal cancer. Mechanistically, circRNAs sponge microRNAs (miRNAs) with specific miRNA response elements (MREs) and compete for regulatory target genes downstream. However, the genetic effects of MREs on colorectal cancer susceptibility remain unclear. The MREs of colorectal cancer-associated circRNAs (CRC-circRNAs) and corresponding single nucleotide polymorphisms (SNPs) were identified by the transcriptome of cancer cells and the 1000 Genomes Project. The association between candidate SNPs and colorectal cancer risk was evaluated in a Chinese population (1150 cases and 1342 controls) and two European populations (9023 cases and 386,896 controls) using logistic regression analysis. Among the 197 candidate SNPs within MREs of 186 CRC-circRNAs, rs25497 in circTUBB was significantly associated with colorectal cancer risk in a Chinese population after false discovery rate (FDR) correction [odds ratio (OR) = 1.78, 95% confidence interval (CI) = 1.44–2.21, P = 1.42 × 10–7, PFDR = 2.80 × 10–5] and even reached significance in a genome-wide association study (GWAS) under the dominant model (P = 1.28 × 10–8). Similar results were found in the European populations (ORmeta = 1.30, 95% CI = 1.10–1.53). Both stratification and interaction analyses revealed that rs25497 interacting with smoking affected the colorectal cancer risk (Pinteraction = 1.48 × 10–2). Here, we first comprehensively identified genetic variants in MREs of CRC-circRNAs and evaluated their effects on colorectal cancer risk in both Chinese and European populations. These findings provide basis for a comprehensive understanding of colorectal cancer etiology.


Colorectal cancer circTUBB Genetic variants Interaction 



This study was partly supported by National Natural Science Foundation of China (81703307) and the Natural Science Foundation of Jiangsu Province (BK20181371) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

204_2019_2624_MOESM1_ESM.docx (1.8 mb)
Supplementary file1 (DOCX 1846 kb)


  1. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66CrossRefGoogle Scholar
  2. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve P (2008) Smoking and colorectal cancer: a meta-analysis. JAMA 300:2765–2778CrossRefGoogle Scholar
  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefGoogle Scholar
  4. Brennan P (2002) Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23:381–387CrossRefGoogle Scholar
  5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209CrossRefGoogle Scholar
  6. Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukacisin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haffty BG, Sinha S, Kang Y (2012) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 14:1212–1222CrossRefGoogle Scholar
  7. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211CrossRefGoogle Scholar
  8. Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053CrossRefGoogle Scholar
  9. Gu D, Li S, Ben S, Du M, Chu H, Zhang Z, Wang M, Zhang ZF, Chen J (2018) Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol 92:2681–2689CrossRefGoogle Scholar
  10. Gu D, Li S, Du M, Tang C, Chu H, Tong N, Zhang Z, Wang M, Chen J (2019) A genetic variant located in the miR-532-5p-binding site of TGFBR1 is associated with the colorectal cancer risk. J Gastroenterol 54:141–148CrossRefGoogle Scholar
  11. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409CrossRefGoogle Scholar
  12. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefGoogle Scholar
  13. Jensen K, Afroze S, Munshi MK, Guerrier M, Glaser SS (2012) Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer 1:81–87PubMedPubMedCentralGoogle Scholar
  14. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264CrossRefGoogle Scholar
  15. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) 'Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85CrossRefGoogle Scholar
  16. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70:2789–2798CrossRefGoogle Scholar
  17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358CrossRefGoogle Scholar
  18. Wang M, Gu D, Du M, Xu Z, Zhang S, Zhu L, Lu J, Zhang R, Xing J, Miao X, Chu H, Hu Z, Yang L, Tang C, Pan L, Du H, Zhao J, Du J, Tong N, Sun J, Shen H, Xu J, Zhang Z, Chen J (2016) Common genetic variation in ETV6 is associated with colorectal cancer susceptibility. Nat Commun 7:11478CrossRefGoogle Scholar
  19. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006CrossRefGoogle Scholar
  20. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y, Goel A (2017) Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:3918–3928CrossRefGoogle Scholar
  21. Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, Wei L, Han L, He C (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46:D925–D929CrossRefGoogle Scholar
  22. Xie L, Li S, Jin J, He L, Xu K, Zhu L, Du M, Liu Y, Chu H, Zhang Z, Wang M, Shi D, Gu D, Ni M (2019) Genetic variant in miR-21 binding sites is associated with colorectal cancer risk. J Cell Mol Med 23:2012–2019CrossRefGoogle Scholar
  23. Xin J, Du M, Gu D, Ge Y, Li S, Chu H, Meng Y, Shen H, Zhang Z, Wang M (2019) Combinations of single nucleotide polymorphisms identified in genome-wide association studies determine risk for colorectal cancer. Int J Cancer 145:2661–2669CrossRefGoogle Scholar
  24. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110:304–315CrossRefGoogle Scholar
  25. Yao B, Zhao J, Li Y, Li H, Hu Z, Pan P, Zhang Y, Du E, Liu R, Xu Y (2015) Elf5 inhibits TGF-beta-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation. Prostate 75:872–882CrossRefGoogle Scholar
  26. Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, Shu Y (2019) CircRNAs in cancer metabolism: a review. J Hematol Oncol 12:90CrossRefGoogle Scholar
  27. Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, Zhu J (2019a) CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer 18:80CrossRefGoogle Scholar
  28. Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, Gao DM, Shi GM, Ke AW, Fan J (2019b) Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer 18:105CrossRefGoogle Scholar
  29. Zhang X, Lin J, Ma Y, Zhao J (2019c) Overexpression of E74-like factor 5 (ELF5) inhibits migration and invasion of ovarian cancer cells. Med Sci Monit 25:856–865CrossRefGoogle Scholar
  30. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, Bastarache LA, Wei W-Q, Denny JC, Lin M, Hveem K, Kang HM, Abecasis GR, Willer CJ, Lee S (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50:1335–1341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Oncology, Nanjing First HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  5. 5.Department of Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations