Advertisement

Pyrrolizidine alkaloids act by toxicity to sinusoidal endothelial cells of the liver

  • Ahmed GhallabEmail author
Letter to the Editor, News and Views
  • 11 Downloads

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Albrecht W, Kappenberg F, Brecklinghaus T et al (2019) Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol 93:1609–1637.  https://doi.org/10.1007/s00204-019-02492-9 CrossRefPubMedGoogle Scholar
  2. Fu PP, Xia Q, Lin G, Chou MW (2004) Pyrrolizidine alkaloids—genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36(1):1–55.  https://doi.org/10.1081/DMR-120028426 CrossRefGoogle Scholar
  3. Ghallab A, Cellière G, Henkel SG et al (2016) Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol 64(4):860–871.  https://doi.org/10.1016/j.jhep.2015.11.018 CrossRefPubMedGoogle Scholar
  4. Ghallab A, Hofmann U, Sezgin S et al (2019) Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology 69(2):666–683CrossRefGoogle Scholar
  5. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530CrossRefGoogle Scholar
  6. Godoy P, Schmidt-Heck W, Natarajan K et al (2015) Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol 63(4):934–942.  https://doi.org/10.1016/j.jhep.2015.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Godoy P, Widera A, Schmidt-Heck W et al (2016) Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Arch Toxicol 90(10):2513–2529CrossRefGoogle Scholar
  8. Grinberg M, Stöber RM, Edlund K et al (2014) Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88(12):2261–2287CrossRefGoogle Scholar
  9. Gu X, Albrecht W, Edlund K et al (2018) Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Arch Toxicol 92(12):3505–3515.  https://doi.org/10.1007/s00204-018-2302-0 CrossRefPubMedGoogle Scholar
  10. Hammad S, Braeuning A, Meyer C et al (2017) A frequent misinterpretation in current research on liver fibrosis: the vessel in the center of CCl4-induced pseudolobules is a portal vein. Arch Toxicol 91(11):3689–3692.  https://doi.org/10.1007/s00204-017-2040-8 CrossRefPubMedGoogle Scholar
  11. Hessel-Pras S, Braeuning A, Guenther G et al (2019) The pyrrolizidine alkaloid senecionine induces CYP-dependent destruction of sinusoidal endothelial cells and cholestasis in mice. Arch Toxicol.  https://doi.org/10.1007/s00204-019-02582-8 CrossRefPubMedGoogle Scholar
  12. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107(23):10371–10376.  https://doi.org/10.1073/pnas.0909374107 CrossRefPubMedGoogle Scholar
  13. Jansen PL, Ghallab A, Vartak N et al (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65(2):722–738CrossRefGoogle Scholar
  14. Kakar F, Akbarian Z, Leslie T et al (2010) An outbreak of hepatic veno-occlusive disease in Western Afghanistan associated with exposure to wheat flour contaminated with pyrrolizidine alkaloids. J Toxicol 2010:313280.  https://doi.org/10.1155/2010/313280 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Leist M, Ghallab A, Graepel R et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91(11):3477–3505CrossRefGoogle Scholar
  16. Mohabbat O, Younos MS, Merzad AA, Srivastava RN, Sediq GG, Aram GN (1976) An outbreak of hepatic veno-occlusive disease in north-western Afghanistan. Lancet (London, England) 2(7980):269–271CrossRefGoogle Scholar
  17. Reif R, Ghallab A, Beattie L et al (2017) In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Arch Toxicol 91(3):1335–1352.  https://doi.org/10.1007/s00204-016-1906-5 CrossRefPubMedGoogle Scholar
  18. Sezgin S, Hassan R, Zühlke S et al (2018) Spatio-temporal visualization of the distribution of acetaminophen as well as its metabolites and adducts in mouse livers by MALDI MSI. Arch Toxicol 92(9):2963–2977CrossRefGoogle Scholar
  19. Stegelmeier BL, Edgar JA, Colegate SM et al (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8(1):95–116PubMedGoogle Scholar
  20. Tandon HD, Tandon BN, Mattocks AR (1978) An epidemic of veno-occlusive disease of the liver in Afghanistan pathologic features. Am J Gastroenterol 70(6):607–613PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forensic Medicine and Toxicology Department, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt

Personalised recommendations