Advertisement

Archives of Toxicology

, Volume 93, Issue 12, pp 3387–3396 | Cite as

Review of high-content screening applications in toxicology

  • Shuaizhang Li
  • Menghang XiaEmail author
Review Article

Abstract

High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.

Keywords

High-content screen Toxicology HCS Tox21 

Notes

Acknowledgements

This study was supported in part by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health. The authors thank Dr. DeeAnn Visk for assistance of editing the manuscript. The views expressed in this review are those of the authors and do not necessarily reflect the statements, opinions, views, conclusions, or policies of the National Center for Advancing Translational Sciences, the NIH. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Compliance ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Al-Ali H et al (2004) High content screening with primary neurons. In: Sittampalam GS et al (eds) Assay guidance manual. Eli Lilly & Company, BethesdaGoogle Scholar
  2. Attene-Ramos MS et al (2013) The Tox21 robotic platform for the assessment of environmental chemicals–from vision to reality. Drug Discov Today 18(15–16):716–723CrossRefPubMedPubMedCentralGoogle Scholar
  3. Augustine-Rauch K, Zhang CX, Panzica-Kelly JM (2010) In vitro developmental toxicology assays: a review of the state of the science of rodent and zebrafish whole embryo culture and embryonic stem cell assays. Birth Defects Res C Embryo Today 90(2):87–98CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azaripour A et al (2016) A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem 51(2):9–23CrossRefPubMedPubMedCentralGoogle Scholar
  5. Azqueta A et al (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 27(2):768–773CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beacham DW et al (2010) Cell-based potassium ion channel screening using the FluxOR assay. J Biomol Screen 15(4):441–446CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bickle M (2010) The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 398(1):219–226CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bjornsson ES (2015) Drug-induced liver injury: an overview over the most critical compounds. Arch Toxicol 89(3):327–334CrossRefGoogle Scholar
  9. Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163(6):1314–1325CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bryce SM et al (2008) Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Mutat Res 650(2):181–195CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bryce SM et al (2016) Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach. Environ Mol Mutagen 57(3):171–189CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buchser W et al (2004) Assay development guidelines for image-based high content screening, high content analysis and high content imaging. In: Sittampalam GS et al (eds) Assay guidance manual. Eli Lilly & Company, BethesdaGoogle Scholar
  13. Caicedo JC, Singh S, Carpenter AE (2016) Applications in image-based profiling of perturbations. Curr Opin Biotechnol 39:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cerignoli F et al (2012) High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods 66(3):246–256CrossRefPubMedPubMedCentralGoogle Scholar
  15. Charoenkwan P et al (2013) HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening. BMC Bioinform 14(Suppl 16):S12CrossRefGoogle Scholar
  16. Chen M et al (2014) A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Arch Toxicol 88(7):1439–1449CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: alzheimer and Parkinson diseases. Front Cell Neurosci 6:124Google Scholar
  18. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clarke KE et al (2017) A robust and reproducible human pluripotent stem cell derived model of neurite outgrowth in a three-dimensional culture system and its application to study neurite inhibition. Neurochem Int 106:74–84CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33(1):17–26CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davies J (2014) Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discov Today 19(6):725–729CrossRefPubMedPubMedCentralGoogle Scholar
  22. de Jong E et al (2011) Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. Toxicol Appl Pharmacol 253(2):103–111CrossRefPubMedPubMedCentralGoogle Scholar
  23. Delp J et al (2018) A high-throughput approach to identify specific neurotoxicants/developmental toxicants in human neuronal cell function assays. ALTEX 5(2):235–253CrossRefGoogle Scholar
  24. Donato MT, Gomez-Lechon MJ, Tolosa L (2017) Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 12(2):201–211CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duchi S et al (2017) A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy. PLoS ONE 12(8):e0183336CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ema M et al (2012) Historical control data on prenatal developmental toxicity studies in rabbits. Congenit Anom (Kyoto) 52(3):155–161CrossRefGoogle Scholar
  27. Ema M et al (2014) Historical control data on developmental toxicity studies in rodents. Congenit Anom (Kyoto) 54(3):150–161CrossRefGoogle Scholar
  28. Fraietta I, Gasparri F (2016) The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov 11(5):501–514CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fuchs TC, Hewitt P (2011) Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J 13(4):615–631CrossRefPubMedPubMedCentralGoogle Scholar
  30. Garcia-Canton C, Anadon A, Meredith C (2013) Assessment of the in vitro gamma H2AX assay by High Content Screening as a novel genotoxicity test. Mutat Res Genet Toxicol Environ Mutagenesis 757(2):158–166CrossRefGoogle Scholar
  31. Gibson CC et al (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131(3):289–299CrossRefGoogle Scholar
  32. Gilbert LA et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gintant G, Sager PT, Stockbridge N (2016) Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov 15(7):457–471CrossRefGoogle Scholar
  34. Giuliano KA et al (1997) High-content screening: a new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 2(4):249–259CrossRefGoogle Scholar
  35. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178CrossRefGoogle Scholar
  36. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338CrossRefPubMedPubMedCentralGoogle Scholar
  37. Grimm FA et al (2015) High-content assay multiplexing for toxicity screening in induced pluripotent stem cell-derived cardiomyocytes and hepatocytes. Assay Drug Dev Technol 13(9):529–546CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harrill JA et al (2010) Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived hN2 cells using automated high-content image analysis. Neurotoxicology 31(3):277–290CrossRefGoogle Scholar
  39. Harrill JA et al (2013) Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. Neurotoxicology 34:61–73CrossRefGoogle Scholar
  40. Harris G et al (2018) Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol 92(8):2587–2606CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hayer A, Meyer T (2010) High-content imaging. Nat Biotechnol 28(5):424–425CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hendriks G et al (2013) Cellular-signaling pathways unveil the carcinogenic potential of chemicals. J Appl Toxicol 33(6):399–409CrossRefGoogle Scholar
  43. Huang R et al (2016) Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 7:10425CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ibanez G et al (2018) Evaluation of compound optical interference in high-content screening. SLAS Discov 23(4):321–329PubMedGoogle Scholar
  45. Jang KJ et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5(9):1119–1129CrossRefGoogle Scholar
  46. Kim MJ et al (2011) High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device. Lab Chip 11(1):104–114CrossRefGoogle Scholar
  47. Kim JA et al (2012) Real-time concurrent monitoring of apoptosis, cytosolic calcium, and mitochondria permeability transition for hypermulticolor high-content screening of drug-induced mitochondrial dysfunction-mediated hepatotoxicity. Toxicol Lett 214(2):175–181CrossRefGoogle Scholar
  48. Kim MT et al (2016) Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124(5):634–641CrossRefGoogle Scholar
  49. Knight AW et al (2009) Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. Regul Toxicol Pharmacol 55(2):188–199CrossRefGoogle Scholar
  50. Kraus OZ, Frey BJ (2016) Computer vision for high content screening. Crit Rev Biochem Mol Biol 51(2):102–109CrossRefGoogle Scholar
  51. Krug AK et al (2013) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87(12):2215–2231CrossRefGoogle Scholar
  52. Lackner DH et al (2015) A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 6:10237CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lang P et al (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5(4):343–356CrossRefGoogle Scholar
  54. Lantz-McPeak S et al (2015) Developmental toxicity assay using high content screening of zebrafish embryos. J Appl Toxicol 35(3):261–272CrossRefGoogle Scholar
  55. Li Y et al (2014) Identification of nephrotoxic compounds with embryonic stem-cell-derived human renal proximal tubular-like cells. Mol Pharm 11(7):1982–1990CrossRefGoogle Scholar
  56. Li X et al (2016) Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol 90(8):1803–1816CrossRefGoogle Scholar
  57. Li S et al (2017) Development and application of human renal proximal tubule epithelial cells for assessment of compound toxicity. Curr Chem Genom Transl Med 11:19–30CrossRefPubMedPubMedCentralGoogle Scholar
  58. Li SZ et al (2018) Identification of Angiogenesis Inhibitors Using a Co-culture Cell Model in a High-Content and High-Throughput Screening Platform. Slas Technology 23(3):217–225PubMedGoogle Scholar
  59. Li S, Huang R, Xu T, Behl M, Parham F, Xia M (2019) Evaluation of chemical compounds that inhibit neurite outgrowth using GFP-labeled iPSC-derived human neurons. NeuroToxicology (revision submitted)Google Scholar
  60. Ljosa V et al (2013) Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J Biomol Screen 18(10):1321–1329CrossRefGoogle Scholar
  61. Ma Z et al (2018) Establishment and validation of an in vitro screening method for traditional chinese medicine-induced nephrotoxicity. Evid Based Complement Alternat Med 2018:2461915PubMedPubMedCentralGoogle Scholar
  62. Masia F et al (2018) Bessel-beam hyperspectral CARS microscopy with sparse sampling: enabling high-content high-throughput label-free quantitative chemical imaging. Anal Chem 90(6):3775–3785CrossRefGoogle Scholar
  63. Mathur A et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mattiazzi Usaj M et al (2016) High-content screening for quantitative cell biology. Trends Cell Biol 26(8):598–611CrossRefGoogle Scholar
  65. Mioulane M et al (2012) Development of high content imaging methods for cell death detection in human pluripotent stem cell-derived cardiomyocytes. J Cardiovasc Transl Res 5(5):593–604CrossRefPubMedPubMedCentralGoogle Scholar
  66. Moffat J et al (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124(6):1283–1298CrossRefGoogle Scholar
  67. Motoyama S et al (2018) Advantages of evaluating gammaH2AX induction in non-clinical drug development. Genes Environ 40:10CrossRefPubMedPubMedCentralGoogle Scholar
  68. Neumann B et al (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721–727CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nishihara K et al (2016) Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform. Mutagenesis 31(1):69–81PubMedGoogle Scholar
  70. Niu G, Chen X (2008) Has molecular and cellular imaging enhanced drug discovery and drug development? Drugs R D 9(6):351–368CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nyffeler J et al (2017) Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol 91(11):3613–3632CrossRefPubMedPubMedCentralGoogle Scholar
  72. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pegoraro G, Misteli T (2017) High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet 33(9):604–615CrossRefPubMedPubMedCentralGoogle Scholar
  74. Peloso A et al (2015) Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 15(4):547–558CrossRefPubMedPubMedCentralGoogle Scholar
  75. Persson M et al (2013) A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods 68(3):302–313CrossRefPubMedPubMedCentralGoogle Scholar
  76. Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29(3):361–376CrossRefPubMedPubMedCentralGoogle Scholar
  77. Radio NM et al (2008) Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci 105(1):106–118CrossRefGoogle Scholar
  78. Raftery TD et al (2014) High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environ Sci Technol 48(1):804–810CrossRefGoogle Scholar
  79. Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3(12):952–959CrossRefGoogle Scholar
  80. Reisen F et al (2015) Linking phenotypes and modes of action through high-content screen fingerprints. Assay Drug Dev Technol 13(7):415–427CrossRefPubMedPubMedCentralGoogle Scholar
  81. Russo DP et al (2019) Nonanimal models for acute toxicity evaluations: applying data-driven profiling and read-across. Environ Health Perspect 127(4):47001CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ryan MJ et al (1994) HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 45(1):48–57CrossRefGoogle Scholar
  83. Ryan KR et al (2016) Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology 53:271–281CrossRefPubMedPubMedCentralGoogle Scholar
  84. Saili KS, Franzosa JA, Baker NC, Ellis-Hutchings RG, Settivari RS, Carney EW, Spencer R, Zurlinden TJ, Kleinstreuer NC, Li S, Xia M (2019) Systems modeling of developmental vascular toxicity. Curr Opin Toxicol 15:55–63CrossRefGoogle Scholar
  85. Sakamuru S et al (2012) Application of a homogenous membrane potential assay to assess mitochondrial function. Physiol Genomics 44(9):495–503CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schaaf S et al (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10):e26397CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schmuck MR et al (2017) Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 91(4):2017–2028CrossRefPubMedPubMedCentralGoogle Scholar
  88. Senutovitch N et al (2015) Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med (Maywood) 240(6):795–808CrossRefGoogle Scholar
  89. Shahane SA et al (2014) Detection of phospholipidosis induction: a cell-based assay in high-throughput and high-content format. J Biomol Screen 19(1):66–76CrossRefPubMedPubMedCentralGoogle Scholar
  90. Shahane SA, Nishihara K, Xia M (2016) High-throughput and high-content micronucleus assay in CHO-K1 cells. Methods Mol Biol 1473:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  91. Shaw G et al (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J 16(6):869CrossRefPubMedPubMedCentralGoogle Scholar
  92. Simm J et al (2018) Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem Biol. 25(5):611e3–618e3CrossRefGoogle Scholar
  93. Sirenko O et al (2014a) High-content high-throughput assays for characterizing the viability and morphology of human iPSC-derived neuronal cultures. Assay Drug Dev Technol 12(9–10):536–547CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sirenko O et al (2014b) High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. Assay Drug Dev Technol 12(1):43–54CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sirenko O et al (2016) Phenotypic characterization of toxic compound effects on liver spheroids derived from iPSC using confocal imaging and three-dimensional image analysis. Assay Drug Dev Technol 14(7):381–394CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sirenko O et al (2017) In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol 322:60–74CrossRefPubMedPubMedCentralGoogle Scholar
  97. Smart DJ et al (2011) Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 715(1–2):25–31CrossRefPubMedPubMedCentralGoogle Scholar
  98. Smith K et al (2018) Phenotypic image analysis software tools for exploring and understanding big image data from cell-based assays. Cell Syst 6(6):636–653CrossRefPubMedPubMedCentralGoogle Scholar
  99. Soo JY et al (2018) Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 14(6):378–393CrossRefPubMedPubMedCentralGoogle Scholar
  100. Stiegler NV et al (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121(1):73–87CrossRefPubMedPubMedCentralGoogle Scholar
  101. Su R et al (2016) High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures. Arch Toxicol 90(11):2793–2808CrossRefPubMedPubMedCentralGoogle Scholar
  102. Taylor DL (2010) A personal perspective on high-content screening (HCS): from the beginning. J Biomol Screen 15(7):720–725CrossRefPubMedPubMedCentralGoogle Scholar
  103. Thomas RS et al (2018) The US federal Tox21 program: a strategic and operational plan for continued leadership. Altex 35(2):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  104. Thougaard AV et al (2014) Validation of a high throughput flow cytometric in vitro micronucleus assay including assessment of metabolic activation in TK6 cells. Environ Mol Mutagen 55(9):704–718CrossRefPubMedPubMedCentralGoogle Scholar
  105. Tolosa L et al (2012) Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci 127(1):187–198CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tolosa L et al (2015) High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 89(10):1847–1860CrossRefPubMedPubMedCentralGoogle Scholar
  107. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  108. van Vliet E et al (2014) Current approaches and future role of high content imaging in safety sciences and drug discovery. Altex 31(4):479–493CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wang DD et al (2010) HCA-vision: automated neurite outgrowth analysis. J Biomol Screen 15(9):1165–1170CrossRefPubMedPubMedCentralGoogle Scholar
  110. Watson C et al (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8(3):2118–2133CrossRefPubMedPubMedCentralGoogle Scholar
  111. Weaver CM et al (2003) An algorithm for neurite outgrowth reconstruction. J Neurosci Methods 124(2):197–205CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wei L et al (2017) Super-multiplex vibrational imaging. Nature 544(7651):465–470CrossRefPubMedPubMedCentralGoogle Scholar
  113. Westerink WM et al (2009) Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development. Mutat Res 676(1–2):113–130CrossRefPubMedPubMedCentralGoogle Scholar
  114. Westerink WM et al (2011) Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells. Mutat Res 724(1–2):7–21CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wilke RA et al (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6(11):904–916CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wilmer MJ et al (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34(2):156–170CrossRefGoogle Scholar
  117. Xia M et al (2011) Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol 252(3):250–258CrossRefPubMedPubMedCentralGoogle Scholar
  118. Xia M et al (2018) Comprehensive analyses and prioritization of Tox21 10K chemicals affecting mitochondrial function by in-depth mechanistic studies. Environ Health Perspect 126(7):077010CrossRefPubMedPubMedCentralGoogle Scholar
  119. Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150(1):115–128CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yozzo KL et al (2013) High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol 47(19):11302–11310CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Division for Pre-Clinical InnovationNational Center for Advancing Translational Sciences, National Institutes of HealthBethesdaUSA

Personalised recommendations