Transcriptome analysis revealed the mechanism of the metabolic toxicity and susceptibility of di-(2-ethylhexyl)phthalate on adolescent male ICR mice with type 2 diabetes mellitus

  • Yangyang Ding
  • Kun Gao
  • Yongchao Liu
  • Guanghua Mao
  • Kun Chen
  • Xuchun Qiu
  • Ting Zhao
  • Liuqing Yang
  • Weiwei FengEmail author
  • Xiangyang WuEmail author
Molecular Toxicology


The prevalence of adolescent type 2 diabetes mellitus (A-T2DM) is increasing year by year. Di-(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer, could exacerbate type 2 diabetes mellitus (T2DM). The study aimed to investigate the metabolic toxicity, susceptibility and mechanism of DEHP exposure to A-T2DM. DEHP was administered orally (0, 0.18, 1.8, 18, and 180 mg/kg/day) for 3 weeks to adolescent normal mice (A-normal mice) and established A-T2DM mice. The results of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) levels showed that the susceptibility of A-T2DM mice to DEHP exposure was more significant than that of A-normal mice. DEHP, interfering with glucose and lipid metabolism of A-normal and A-T2DM mice, caused the body weight increase of A-normal mice and decrease of A-T2DM mice. Besides, DEHP could cause more injury of cardiovascular, hepatic and renal function to A-T2DM mice than A-normal mice. Hepatic transcriptome analysis revealed that DEHP exposure interfered with the biological feedback adjustment of endocrine and metabolic system in A-T2DM mice and then led to the development of T2DM. According to the transcriptome results, insulin signaling transduction pathway was applied and researched by immunoassay. It was discovered that DEHP reduced insulin sensitivity and disturbed insulin signaling transduction, glucose utilization, lipid synthesis and protein synthesis. Collectively, DEHP could disturb the endocrine and metabolic functions and increase the insulin resistance in adolescent mice. Moreover, the adolescent T2DM mice are more sensitive to DEHP-induced endocrine and metabolic toxicity than the healthy adolescent mice.


  • DEHP could cause metabolic toxicity and insulin resistance to adolescent mice.

  • DEHP could exacerbate insulin resistance and metabolic disorders in adolescent T2DM mice.

  • Adolescent T2DM mice are more sensitive to DEHP than normal adolescent mice.


Type 2 diabetes mellitus Di-(2-ethylhexyl)phthalate Insulin resistance Metabolic toxicity Susceptibility Transcriptome analysis 



The experiments were supported by Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.


This work was supported financially by Specialized Research Fund for the Natural Science Foundation of China (81602889), China Postdoctoral Science Foundation (2017M611741), Postdoctoral Science Foundation of Jiangsu Province (1701108B), Research Foundation for Senior Talents of Jiangsu University (15JDG146), Graduate Innovative Projects in Jiangsu Province (KYCX17_1795), State Key Laboratory of Environmental Chemistry and Ecotoxicology Open Fund (KF 2018-02), Natural Science Foundation of Jiangsu province (BK20160497) and Collaborative Innovation Center for Water Treatment Technology and Materials.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

204_2019_2590_MOESM1_ESM.docx (96 kb)
Supplementary material 1 (DOCX 96 kb)
204_2019_2590_MOESM2_ESM.docx (91 kb)
Supplementary material 2 (DOCX 90 kb)
204_2019_2590_MOESM3_ESM.docx (21 kb)
Supplementary material 3 (DOCX 21 kb)
204_2019_2590_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 21 kb)
204_2019_2590_MOESM5_ESM.docx (30 kb)
Supplementary material 5 (DOCX 30 kb)


  1. Albro PW, Lavenhar SR (1989) Metabolism of di(2-ethylhexyl)phthalate. Drug Metab Rev 21(1):13–34PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ali Z, Ma H, Wali A, Ayim I, Rashid MT, Younas S (2018) A double-blinded, randomized, placebo-controlled study evaluating the impact of dates vinegar consumption on blood biochemical and hematological parameters in patients with type 2 diabetes. Trop J Pharm Res 17(12):2463–2469CrossRefGoogle Scholar
  3. Amara I, Timoumi R, Annabi E, Neffati F, Najjar MF, Bouaziz C, Abid-Essefi S (2019) Di (2-ethylhexyl)phthalate induces cardiac disorders in BALB/c mice. Environ Sci Pollut Res 26(8):7540–7549CrossRefGoogle Scholar
  4. Amed S (2015) The future of treating youth-onset type 2 diabetes: focusing upstream and extending our influence into community environments. Curr Diabetes Rep 15(3):7CrossRefGoogle Scholar
  5. Asztalos BF, Schaefer EJ, Horvath KV et al (2007) Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res 48(3):592–599PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14(7):731–741PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371(9606):64–74PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen DQ, Chen H, Chen L, Vaziri ND, Wang M, Li XR, Zhao YY (2017) The link between phenotype and fatty acid metabolism in advanced chronic kidney disease. Nephrol Dial Transplant 32(7):1154–1166. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cho NH, Shaw JE, Karuranga S, Fernandes JDD, Ohlrogge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J (1994) PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370(6484):71–75PubMedCrossRefPubMedCentralGoogle Scholar
  12. Curran RD, Billiar TR, Stuehr DJ, Ochoa JB, Harbrecht BG, Flint SG, Simmons RL (1990) Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg 212(4):462–471PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dales RE, Kauri LM, Cakmak S (2017) The associations between phthalate exposure and insulin resistance, β-cell function and blood glucose control in a population-based sample. Sci Total Environ 612:1287–1292PubMedCrossRefPubMedCentralGoogle Scholar
  14. Díaz-Garzón J, Sandoval Y, Smith SW, Love S, Schulz K, Thorden SE, Johnson BK, Driver B, Jacoby K, Carlson MD (2017) Discordance between ICD-coded myocardial infarction and diagnosis according to the universal definition of myocardial infarction. Clin Chem 63(1):415–419PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ding YY, Yc Liu, Fei F, Yang LQ, Mao GH, Zhao T, Zhang ZH, Yan MJ, Feng WW, Wu XY (2019) Study on the metabolism toxicity, susceptibility and mechanism of di-(2-ethylhexyl)phthalate on rat liver BRL cells with insulin resistance in vitro. Toxicology 422:102–120PubMedCrossRefPubMedCentralGoogle Scholar
  16. Du X, Li X, Chen L, Zhang M, Lei L, Gao W, Shi Z, Dong Y, Wang Z, Li X, Liu G (2018) Hepatic miR-125b inhibits insulin signaling pathway by targeting PIK3CD. J Cell Physiol 233:6052–6066PubMedCrossRefPubMedCentralGoogle Scholar
  17. Duan Y, Wang L, Han L, Wang B, Sun H, Chen L, Zhu L, Luo Y (2017) Exposure to phthalates in patients with diabetes and its association with oxidative stress, adiponectin, and inflammatory cytokines. Environ Int 109:53–63. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dunnick JK, Shockley KR, Morgan DL, Brix A, Travlos GS, Gerrish K, Sanders JM, Ton TV, Pandiri AR (2017) Hepatic transcriptomic alterations for N,N-dimethyl-p-toluidine (DMPT) and p-toluidine after 5-day exposure in rats. Arch Toxicol 91(4):1685–1696PubMedCrossRefPubMedCentralGoogle Scholar
  19. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  20. Feng W, Zhao T, Mao G, Wang W, Feng Y, Li F, Zheng D, Wu H, Jin D, Yang L, Wu X (2015) Type 2 diabetic rats on diet supplemented with chromium malate show improved glycometabolism, glycometabolism-related enzyme levels and lipid metabolism. PLoS One 10(5):e0125952. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37(4):693–707PubMedPubMedCentralGoogle Scholar
  22. Gundmi S, Maiya AG, Bhat AK, Ravishankar N, Hande MH, Rajagopal K (2018) Hand dysfunction in type 2 diabetes mellitus: systematic review with meta-analysis. Ann Phys Rehabil Med 61(2):99–104PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hajduch E, Litherland GJ, Hundal HS (2001) Protein kinase B (PKB/Akt)—a key regulator of glucose transport? FEBS Lett 492(3):199–203PubMedPubMedCentralCrossRefGoogle Scholar
  24. Henriksen EJ, Dokken BB (2006) Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 7(11):1435–1441PubMedCrossRefPubMedCentralGoogle Scholar
  25. Iynedjian PB (2009) Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66(1):27–42PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kitano H (2002) Computational systems biology. Nature 420(6912):206PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lai KP, Lee JC, Wan HT, Li JW, Wong AYM, Chan TF, Oger C, Galano JM, Durand T, Leung KS (2017) Effects of in utero PFOS exposure on transcriptome, lipidome and function of mouse testis. Environ Sci Technol 51(15):8782–8794PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lawan A, Bennett AM (2017) Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol Metab 28(12):868–878PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lee CH, Shih AZL, Woo YC, Fong CHY, Leung OY, Janus E, Cheung BMY, Lam KSL (2016a) Optimal cut-offs of homeostasis model assessment of insulin resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: a 15-year prospective study in Chinese. PLoS One 11(9):e0163424PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lee KI, Chiang CW, Lin HC, Zhao JF, Li CT, Shy SK, Lee TS (2016b) Maternal exposure to di-(2-ethylhexyl)phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Arch Toxicol 90(5):1211–1224. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li M, Hirano K-i, Ikeda Y, Higashi M, Hashimoto C, Zhang B, Kozawa J, Sugimura K, Miyauchi H, Suzuki A (2019) Triglyceride deposit cardiomyovasculopathy: a rare cardiovascular disorder. Orphanet J Rare Dis. 14(1):134PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liang DW, Tong Z, Fang HHP, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183PubMedCrossRefPubMedCentralGoogle Scholar
  33. MacAulay K, Woodgett JR (2008) Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of type 2 diabetes. Expert Opin Ther Targets 12(10):1265–1274PubMedPubMedCentralCrossRefGoogle Scholar
  34. Meng XZ, Wang Y, Xiang N, Chen L, Liu ZG, Wu B, Dai XH, Zhang YH, Xie ZY, Ebinghaus R (2014) Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soil. Sci Total Environ 476–477:242–249PubMedCrossRefPubMedCentralGoogle Scholar
  35. Mengozzi A, Carli F, Biancalana E, Della Latta V, Seghieri M, Gastaldelli A, Solini A (2018) Phthalates exposure as determinant of albuminuria in type 2 diabetes subjects: a cross-sectional study. Diabetologia 61:S162–S163Google Scholar
  36. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GKW, Smith BJ, Watson CJ, Žáková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Wardm CW, Lawrence MC (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493(7431):241PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nguyen P, Leray V, Diez M, Serisier S, Bloch L, Siliart B, Dumon H (2010) Liver lipid metabolism. J Anim Physiol Anim Nutr 92(3):272–283CrossRefGoogle Scholar
  38. Ossoli A, Simonelli S, Varrenti M, Morici N, Oliva F, Stucchi M, Gomaraschi M, Strazzella A, Arnaboldi L, Mj Thomas (2019) Recombinant LCAT (lecithin:cholesterol acyltransferase) rescues defective HDL (high-density lipoprotein)-mediated endothelial protection in acute coronary syndrome. Arterioscler Thromb Vasc Biol 39(5):915–924PubMedCrossRefPubMedCentralGoogle Scholar
  39. Qiu X, Kim S, Kang IJ, Hano T, Shimasaki Y, Oshima Y (2019) Combined toxicities of tributyltin and polychlorinated biphenyls on the development and hatching of Japanese medaka (Oryzias latipes) embryos via in ovo nanoinjection. Chemosphere 225:927–934CrossRefGoogle Scholar
  40. Rajesh P, Balasubramanian K (2015) Gestational exposure to di(2-ethylhexyl)phthalate (DEHP) impairs pancreatic beta-cell function in F1 rat offspring. Toxicol Lett 232(1):46–57. CrossRefPubMedGoogle Scholar
  41. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017PubMedCrossRefPubMedCentralGoogle Scholar
  42. Rockefeller JD (2015) Diabetes: symptoms, causes, treatment and prevention. CreateSpace Independent Publishing Platform, Scotts ValleyGoogle Scholar
  43. Roglic G (2016) WHO Global report on diabetes: a summary. Int J Non Commun Dis 1(1):3–8CrossRefGoogle Scholar
  44. Rohlfing CL, Wiedmeyer H-M, Little RR, England JD, Tennill A, Goldstein DE (2002) Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the diabetes control and complications trial. Diabetes Care 25(2):275–278PubMedCrossRefPubMedCentralGoogle Scholar
  45. Rotimi SO, Adelani IB, Bankole GE, Rotimi OA (2018) Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomed Pharmacother 101:430–437. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ruhl CE, Everhart JE (2000) Association of diabetes, serum insulin, and C-peptide with gallbladder disease. Hepatology 31(2):299–303PubMedCrossRefPubMedCentralGoogle Scholar
  47. Salcini A, McGlade J, Pelicci G, Nicoletti I, Pawson T, Pelicci P (1994) Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 9(10):2827–2836PubMedPubMedCentralGoogle Scholar
  48. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806PubMedCrossRefPubMedCentralGoogle Scholar
  49. Sampath S, Selvaraj KK, Shanmugam G, Krishnamoorthy V, Chakraborty P, Ramaswamy BR (2017) Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern India. Environ Pollut 221:407–417PubMedCrossRefPubMedCentralGoogle Scholar
  50. Spyros D, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Gephart MGH, Barres BA, Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 112(23):7285–7290CrossRefGoogle Scholar
  51. Su TC, Hwang JS, Torng PL, Wu C, Lin CY, Sung FC (2019) Phthalate exposure increases subclinical atherosclerosis in young population. Environ Pollut 250:586–593. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tajfard M, Tavakoly Sany SB, Avan A, Latiff LA, Rahimi HR, Moohebati M, Hasanzadeh M, Ghazizadeh H, Esmaeily H, Doosti H (2019) Relationship between serum high sensitivity C-reactive protein with angiographic severity of coronary artery disease and traditional cardiovascular risk factors. J Cell Physiol 234(7):10289–10299. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tang H, Li G, Zhao Y, Wang F, Gower EW, Shi LW, Wang TS (2018) Comparisons of diabetic retinopathy events associated with glucose-lowering drugs in patients with type 2 diabetes mellitus: a network meta-analysis. Diabetes Obes Metab 20(5):1262–1279PubMedCrossRefPubMedCentralGoogle Scholar
  54. Tanti J-F, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9(6):753–762PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tao A, Xu X, Kvietys P, Kao R, Martin C, Rui T (2018) Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol 105:94–103. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tappy L, Lê K-A (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46PubMedCrossRefPubMedCentralGoogle Scholar
  57. Telo GH, Cureau FV, Szklo M, Bloch KV, Schaan BD (2019) Prevalence of type 2 diabetes among adolescents in Brazil: findings from Study of Cardiovascular Risk in Adolescents (ERICA). Pediatr Diabetes 20(4):389–396. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thomas MC, Cooper ME, Zimmet P (2016) Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 12(2):73PubMedCrossRefPubMedCentralGoogle Scholar
  59. Trekels H, Van DMF, Stoks R (2013) Predator cues magnify effects of the pesticide endosulfan in water bugs in a multi-species test in outdoor containers. Aquat Toxicol 138:116–122PubMedCrossRefPubMedCentralGoogle Scholar
  60. Vafeiadi M, Myridakis A, Roumeliotaki T, Margetaki K, Chalkiadaki G, Dermitzaki E, Venihake M, Sarri K, Vassilaki M, Leventakou V (2018) Association of early life exposure to phthalates with obesity and cardiometabolic traits in childhood: sex specific associations. Front Public Health. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Viswanathan MP, Mullainadhan V, Chinnaiyan M, Karundevi B (2017) Effects of DEHP and its metabolite MEHP on insulin signalling and proteins involved in GLUT4 translocation in cultured L6 myotubes. Toxicology 386:60–71. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang JF, Huang YM, Li KX, Chen YY, Vanegas D, Mclamore ES, Shen YB (2016) Leaf extract from Lithocarpus polystachyus Rehd. promote glycogen synthesis in T2DM mice. Plos One 11(11):e0166557PubMedPubMedCentralCrossRefGoogle Scholar
  63. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321PubMedCrossRefPubMedCentralGoogle Scholar
  64. World Health Organization, Regional Office for the Eastern Mediterranean (2006) Guidelines for the prevention, management and care of diabetes mellitus.
  65. Wright AK, Kontopantelis E, Emsley R, Buchan I, Mamas MA, Sattar N, Ashcroft DM, Rutter MK (2019) Cardiovascular risk and risk factor management in type 2 diabetes: a population-based cohort study assessing sex disparities. Circulation 139(24):2742–2753PubMedCrossRefPubMedCentralGoogle Scholar
  66. Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R (2016) A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. Environ Sci Pollut Res 23(24):24642–24693CrossRefGoogle Scholar
  67. Zhang Z, Wan T, Peng X, He G, Liu Y, Zeng L (2016) Distribution and sources of oxygenated non-hydrocarbons in topsoil of Beijing, China. Environ Sci Pollut Res 23(16):16524–16541CrossRefGoogle Scholar
  68. Zhang C, Fennel EMJ, Douillet C, Styblo M (2017a) Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Arch Toxicol 91(12):3811–3821. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang W, Shen X-y, Zhang W-w, Chen H, Xu W-p, Wei W (2017b) Di-(2-ethylhexyl)phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ. Toxicol Appl Pharmacol 316:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  70. Zhang Z-M, Zhang H-H, Zhang J, Wang Q-W, Yang G-P (2018) Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. Sci Total Environ 619:93–102PubMedCrossRefPubMedCentralGoogle Scholar
  71. Zhou L, Chen H, Xu Q, Han X, Zhao YM, Song XY, Zhao TY, Ye L (2019) The effect of di-2-ethylhexyl phthalate on inflammation and lipid metabolic disorder in rats. Ecotoxicol Environ Saf 170:391–398PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yangyang Ding
    • 1
  • Kun Gao
    • 1
  • Yongchao Liu
    • 1
  • Guanghua Mao
    • 1
  • Kun Chen
    • 1
    • 3
  • Xuchun Qiu
    • 1
    • 3
  • Ting Zhao
    • 2
  • Liuqing Yang
    • 2
  • Weiwei Feng
    • 1
    • 3
    Email author
  • Xiangyang Wu
    • 1
    • 3
    Email author
  1. 1.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina
  3. 3.Institute of Environmental Health and Ecological SecurityJiangsu UniversityZhenjiangChina

Personalised recommendations