Advertisement

Archives of Toxicology

, Volume 93, Issue 8, pp 2409–2420 | Cite as

Scatter plotting as a simple tool to analyse relative organ to body weight in toxicological bioassays

  • Felix M. KluxenEmail author
Protocols
  • 158 Downloads

Abstract

In toxicological bioassays, organ weight is often expressed as a ratio to body weight or another denominator to account for natural differences in animal sizes. However, the relationship of treatment-induced organ and body weight change is complicated and relative weights may accordingly confound a toxicological assessment. In addition, the statistical assessment of relative weights is challenging. The examples given in this document show that toxicological interpretation of organ weight data in relation to body weight can be vastly improved by simple bivariate scatter plotting. Conversely, plots of relative organ weight are of limited value and may lead to an incorrect interpretation of toxic effects when used in isolation. Scatter plots are useful for qualitative hazard characterization and to generate hypotheses. Bivariate summary statistics indicate effect levels and help to explore the actual correlation of organ to body weight.

Keywords

Experimental toxicology Regulatory toxicology Exploratory data analysis In vivo Hazard characterization 

Notes

Acknowledgements

I would like to thank the following people for educational discussions related to relative organ weights and associated issues: Dr. Stanley E. Lazic, AstraZeneca, for general discussions and the development of Bayesian models to assess toxic effects. Prof. Christian Ritz, University of Copenhagen, with regard to benchmark dose modelling and, Prof. Ludwig A. Hothorn for discussing different statistical methods to statistically compare relative organ weights.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Andersen H, Larsen S, Spliid H, Christensen ND (1999) Multivariate statistical analysis of organ weights in toxicity studies. Toxicology 136(2):67–77.  https://doi.org/10.1016/S0300-483X(99)00056-6 CrossRefPubMedGoogle Scholar
  2. Angervall L, Carlstrom E (1963) Theoretical criteria for the use of relative organ weights and similar ratios in biology. J Theor Biol 4(3):254–259CrossRefPubMedGoogle Scholar
  3. Anzai H, Oishi K, Kumagai H, Hosoi E, Nakanishi Y, Hirooka H (2017) Interspecific comparison of allometry between body weight and chest girth in domestic bovids. Sci Rep 7(1):4817.  https://doi.org/10.1038/s41598-017-04976-z CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey SA, Zidell RH, Perry RW (2004) Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol 32(4):448–466.  https://doi.org/10.1080/01926230490465874 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836.  https://doi.org/10.1080/01621459.1979.10481038 CrossRefGoogle Scholar
  6. Cleveland WS (1985) The elements of graphing data. Wadsworth Publ. Co., BelmontGoogle Scholar
  7. Cleveland WS (1993) Visualizing data. AT & T Bell Laboratories, Murray Hill, NJ, USAGoogle Scholar
  8. Cumming RR (1929) On the nature of hereditary size limitation. II. The growth of parts in relation to the whole. J Exp Biol 6(4):311–324Google Scholar
  9. Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37(3):213–219.  https://doi.org/10.1152/advan.00053.2013 CrossRefPubMedGoogle Scholar
  10. Feron VJ, de Groot AP, Spanjers MT, Til HP (1973) An evaluation of the criterion “organ weight” under conditions of growth retardation. Food Cosmet Toxicol 11(1):85–94.  https://doi.org/10.1016/0015-6264(73)90064-3 CrossRefPubMedGoogle Scholar
  11. Festing MFW (2014) Extending the statistical analysis and graphical presentation of toxicity test results using standardized effect sizes. Toxicol Pathol 42(8):1238–1249.  https://doi.org/10.1177/0192623313517771 CrossRefPubMedGoogle Scholar
  12. Fosang AJ, Colbran RJ (2015) Transparency is the key to quality. J Biol Chem 290(50):29692–29694.  https://doi.org/10.1074/jbc.E115.000002 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friendly M, Denis D (2005) The early origins and development of the scatterplot. J Hist Behav Sci 41(2):103–130CrossRefPubMedGoogle Scholar
  14. Friendly M, Monette G, Fox J (2013) Elliptical insights: understanding statistical methods through elliptical geometry. Stat Sci 28(1):1–39.  https://doi.org/10.1214/12-STS402 CrossRefGoogle Scholar
  15. Gnanadesikan R, Kettenring JR (1972) Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28:81–124CrossRefGoogle Scholar
  16. Guilbaud O, Karlsson P (2011) Confidence regions for Bonferroni-based closed tests extended to more general closed tests. J Biopharm Stat 21(4):682–707.  https://doi.org/10.1080/10543406.2011.551331 CrossRefPubMedGoogle Scholar
  17. Heymsfield SB, Gallagher D, Mayer L, Beetsch J, Pietrobelli A (2007) Scaling of human body composition to stature: new insights into body mass index. Am J Clin Nutr 86(1):82–91.  https://doi.org/10.1093/ajcn/86.1.82 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hothorn LA (2016) Statistics in toxicology using R. CRC Press, Boca RatonCrossRefGoogle Scholar
  19. Hothorn LA, Kluxen FM (2019) Robust multiple comparisons against a control group with application in toxicology. arXiv:1905.01838 [stat.AP]
  20. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363.  https://doi.org/10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  21. Huxley JS (1924) Constant differential growth-ratios and their significance. Nature 114:895–896CrossRefGoogle Scholar
  22. Marazzi A, Joss J (1993) Algorithms, routines, and S functions for robust statistics: the FORTRAN library ROBETH with an interface to S-PLUS. Wadsworth Publ. Co., BelmontGoogle Scholar
  23. Michael B, Yano B, Sellers RS et al (2007) Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol 35(5):742–750.  https://doi.org/10.1080/01926230701595292 CrossRefPubMedGoogle Scholar
  24. Miller GA, Chapman JP (2001) Misunderstanding analysis of covariance. J Abnorm Psychol 110(1):40–48.  https://doi.org/10.1037/0021-843X.110.1.40 CrossRefPubMedGoogle Scholar
  25. Monette G (1990) Geometry of multiple regression and interactive 3-D graphics. In: Fox J, Long JS (eds) Modern methods of data analysis. Sage, Beverly Hills, pp 209–256Google Scholar
  26. National Toxicology Program (n.d.) 13 weeks gavage Study on female F344 rats administered with sodium dichromate dihydrate (VI) (CASRN: 7789-12-0, Study number: C20114. TDMS number: 2011402) Technical reportGoogle Scholar
  27. Nature Methods Editorial (2014) Kick the bar chart habit. Nat Methods 11:113.  https://doi.org/10.1038/nmeth.2837 CrossRefGoogle Scholar
  28. OECD (2007) Test no. 440: uterotrophic bioassay in rodents. OECD Publishing, Paris.  https://doi.org/10.1787/9789264067417-en CrossRefGoogle Scholar
  29. Oishi S, Oishi H, Hiraga K (1979) The effect of food restriction for 4 weeks on common toxicity parameters in male rats. Toxicol Appl Pharmacol 47(1):15–22.  https://doi.org/10.1016/0041-008X(79)90066-8 CrossRefPubMedGoogle Scholar
  30. Pallmann P, Hothorn LA (2016) Boxplots for grouped and clustered data in toxicology. Arch Toxicol 90(7):1631–1638.  https://doi.org/10.1007/s00204-015-1608-4 CrossRefPubMedGoogle Scholar
  31. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Reinsch CH (1967) Smoothing by spline functions. Numer Math 10(3):177–183.  https://doi.org/10.1007/bf02162161 CrossRefGoogle Scholar
  33. Rousseeuw PJ, Driessen KV (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3):212–223.  https://doi.org/10.1080/00401706.1999.10485670 CrossRefGoogle Scholar
  34. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New YorkCrossRefGoogle Scholar
  35. Rousseeuw P, Ruts I, Tukey JW (1999) The bagplot: a bivariate boxplot. Am Stat 53:382Google Scholar
  36. Sellers RS, Mortan D, Michael B et al (2007) Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol 35(5):751–755.  https://doi.org/10.1080/01926230701595300 CrossRefPubMedGoogle Scholar
  37. Shingleton A (2010) Allometry: the study of biological scaling. Nat Educ Knowl 3(10):2Google Scholar
  38. Shirley E (1977) The analysis of organ weight data. Toxicology 8(1):13–22CrossRefPubMedGoogle Scholar
  39. Stevens MT (1976) The value of relative organ weights. Toxicology 5(3):311–318CrossRefPubMedGoogle Scholar
  40. Takizawa T (1978) An unbiased comparison of organ weights when an inequality in body weight exists. Toxicology 9(4):353–360.  https://doi.org/10.1016/0300-483X(78)90018-5 CrossRefPubMedGoogle Scholar
  41. Thöni H (1988) Multiple comparisons and conditional joint confidence regions. In: Bauer P, Hommel G, Sonnemann E (eds) Multiple Hypothesenprüfung / Multiple Hypotheses Testing: Symposium, 6. und 7. November 1987. Springer, Berlin, Heidelberg, pp 190–206.  https://doi.org/10.1007/978-3-642-52307-6_16
  42. Trieb G, Pappritz G, Lützen L (1976) Allometric analysis of organ weights. I. Rats. Toxicol Appl Pharmacol 35(3):531–542.  https://doi.org/10.1016/0041-008X(76)90076-4 CrossRefPubMedGoogle Scholar
  43. Tufte E (1990) Envisioning information. Graphics Press, Cheshire, CT, USAGoogle Scholar
  44. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Pub. Co, ReadingGoogle Scholar
  45. Wainer H (2013) Graphic discovery: a trout in the milk and other visual adventures. Princeton University Press, PrincetonCrossRefGoogle Scholar
  46. Wan F, Kunz CU, Jaki TF (2019) Confidence regions for treatment effects in subgroups in biomarker stratified designs. Biom J 61(1):27–39.  https://doi.org/10.1002/bimj.201700303 CrossRefPubMedGoogle Scholar
  47. Weichenthal S, Hancock S, Raffaele K (2010) Statistical power in the analyses of brain weight measures in pesticide neurotoxicity testing and the relationship between brain and body weight. Regul Toxicol Pharmacol 57(2):235–240.  https://doi.org/10.1016/j.yrtph.2010.03.001 CrossRefPubMedGoogle Scholar
  48. Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol 13(4):e1002128.  https://doi.org/10.1371/journal.pbio.1002128 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wickham H (2016) ggplot2—Elegant graphics for data analysis, 2nd edn. Springer International Publishing, ChamGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ADAMA Deutschland GmbHCologneGermany

Personalised recommendations