Advertisement

Archives of Toxicology

, Volume 93, Issue 8, pp 2295–2305 | Cite as

Quantification of freely dissolved effect concentrations in in vitro cell-based bioassays

  • Luise HennebergerEmail author
  • Marie Mühlenbrink
  • Maria König
  • Rita Schlichting
  • Fabian C. Fischer
  • Beate I. Escher
In vitro systems

Abstract

Improved understanding of chemical exposure in in vitro bioassays is required for quantitative in vitro–in vivo extrapolation (QIVIVE). In this study, we quantified freely dissolved concentrations in medium sampled from in vitro cell-based bioassays (Cfree,medium) for nine chemicals with different hydrophobicity and speciation at the time point of dosing and after an incubation period of 24 h using solid-phase microextraction. The chemicals were tested in two reporter gene assays, the AREc32 assay indicative of the oxidative stress response and the PPARγ-GeneBLAzer assay that responds to chemicals which bind to the peroxisome proliferator-activated receptor gamma. For seven of the nine chemicals, Cfree,medium did not change significantly over time in both assays and the experimentally determined Cfree,medium generally agreed well with predictions of a mass balance model that describes the partitioning between proteinaceous and lipidous medium constituents, cells and the aqueous phase. Two chemicals showed a decrease of Cfree,medium in the AREc32 assay over time that was probably caused by cellular metabolism. Furthermore, Cfree,medium of the acidic chemical diclofenac deviated from the model predictions by more than a factor of 10 at higher concentrations, which indicates nonlinear binding and saturation of the medium proteins. Bioassay results are typically reported as nominal effect concentrations (ECnom), although it is established that freely dissolved effect concentrations (ECfree) are a better measure for the bioavailable dose and the method developed here provides a simple experimental approach to measure and model ECfree in in vitro bioassay for improved QIVIVE models.

Keywords

QIVIVE Protein binding Solid-phase microextraction Mass balance models 

Notes

Acknowledgements

We thank Sophia Mälzer for supporting the SPME experiments, Jenny John for cell culturing and the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (Grant No. NC/C017104/1) for funding this work (Phase 1) through the CRACK IT program (Ref CRACKITDC-P1-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2019_2498_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2557 kb)

References

  1. Algharably EAH, Kreutz R, Gundert-Remy U (2019) Importance of in vitro conditions for modeling the in vivo dose in humans by in vitro–in vivo extrapolation (IVIVE). Arch Toxicol.  https://doi.org/10.1007/s00204-018-2382-x Google Scholar
  2. Armitage JM, Wania F, Arnot JA (2014) Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol 48(16):9770–9779.  https://doi.org/10.1021/es501955g CrossRefGoogle Scholar
  3. Avdeef A, Box KJ, Comer JEA, Hibbert C, Tam KY (1998) pH-Metric logP 10. Determination of liposomal membrane-water partition coefficients of lonizable drugs. Pharm Res 15(2):209–215.  https://doi.org/10.1023/a:1011954332221 CrossRefGoogle Scholar
  4. Belpaire FM, Bogaert MG, Rosseneu M (1982) Binding ofβ-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol 22(3):253–256.  https://doi.org/10.1007/bf00545224 CrossRefGoogle Scholar
  5. Endo S, Goss K-U (2011) Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem Res Toxicol 24(12):2293–2301.  https://doi.org/10.1021/tx200431b CrossRefGoogle Scholar
  6. Endo S, Watanabe N, Ulrich N, Bronner G, Goss K-U (2015) UFZ-LSER database v 3.2.1. http://www.ufz.de/lserd. Accessed 15 Jan 2019
  7. MacBean C (ed) (2008–2010) e-Pesticide manual, 15th edn, ver. 5.1, Alton, UK; British Crop Protection Council. Quinoxyfen (124495-18-7)Google Scholar
  8. Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environ Sci Technol 40(23):7402–7408.  https://doi.org/10.1021/es052572v CrossRefGoogle Scholar
  9. Escher BI, Dutt M, Maylin E et al (2012) Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway. J Environ Monit 14(11):2877–2885.  https://doi.org/10.1039/c2em30506b CrossRefGoogle Scholar
  10. Escher BI, Neale PA, Villeneuve DL (2018) The advantages of linear concentration-response curves for in vitro bioassays with environmental samples. Environ Toxicol Chem 37(9):2273–2280.  https://doi.org/10.1002/etc.4178 CrossRefGoogle Scholar
  11. Fabian E, Gomes C, Birk B et al (2019) In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds. Arch Toxicol 93(2):401–416.  https://doi.org/10.1007/s00204-018-2372-z CrossRefGoogle Scholar
  12. Fischer FC, Henneberger L, König M et al (2017) Modeling exposure in the Tox21 in vitro bioassays. Chem Res Toxicol 30(5):1197–1208.  https://doi.org/10.1021/acs.chemrestox.7b00023 CrossRefGoogle Scholar
  13. Fischer FC, Abele C, Droge STJ et al (2018a) Cellular uptake kinetics of neutral and charged chemicals in in vitro assays measured by fluorescence microscopy. Chem Res Toxicol 31(8):646–657.  https://doi.org/10.1021/acs.chemrestox.8b00019 CrossRefGoogle Scholar
  14. Fischer FC, Cirpka OA, Goss K-U, Henneberger L, Escher BI (2018b) Application of experimental polystyrene partition constants and diffusion coefficients to predict the sorption of neutral organic chemicals to multiwell plates in in vivo and in vitro bioassays. Environ Sci Technol 52(22):13511–13522.  https://doi.org/10.1021/acs.est.8b04246 CrossRefGoogle Scholar
  15. Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332:30–40.  https://doi.org/10.1016/j.tox.2013.08.012 CrossRefGoogle Scholar
  16. Henneberger L, Goss K-U, Endo S (2016) Equilibrium sorption of structurally diverse organic ions to bovine serum albumin. Environ Sci Technol 50(10):5119–5126.  https://doi.org/10.1021/acs.est.5b06176 CrossRefGoogle Scholar
  17. Henneberger L, Mühlenbrink M, Fischer FC, Escher BI (2019) C18-coated solid-phase microextraction fibers for the quantification of partitioning of organic acids to proteins, lipids, and cells. Chem Res Toxicol 32(1):168–178.  https://doi.org/10.1021/acs.chemrestox.8b00249 CrossRefGoogle Scholar
  18. Heringa MB, Schreurs R, van der Saag PT, van der Burg B, Hermens JLM (2003) Measurement of free concentration as a more intrinsic dose parameter in an in vitro assay for estrogenic activity. Chem Res Toxicol 16(12):1662–1663.  https://doi.org/10.1021/tx034204f Google Scholar
  19. Heringa MB, Schreurs RHMM, Busser F, Van Der Saag PT, Van Der Burg B, Hermens JLM (2004) Toward more useful in vitro toxicity data with measured free concentrations. Environ Sci Technol 38(23):6263–6270.  https://doi.org/10.1021/es049285w CrossRefGoogle Scholar
  20. Kosky PG, Silva JM, Guggenheim EA (1991) The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system. Ind Eng Chem Res 30(3):462–467.  https://doi.org/10.1021/ie00051a005 CrossRefGoogle Scholar
  21. Kramer NI, van Eijkeren JCH, Hermens JLM (2007) Influence of albumin on sorption kinetics in solid-phase microextraction: consequences for chemical analyses and uptake processes. Anal Chem 79(18):6941–6948.  https://doi.org/10.1021/ac070574n CrossRefGoogle Scholar
  22. Kramer NI, Krismartina M, Rico-Rico A, Blaauboer BJ, Hermens JLM (2012) Quantifying processes determining the free concentration of phenanthrene in basal cytotoxicity assays. Chem Res Toxicol 25(2):436–445.  https://doi.org/10.1021/tx200479k CrossRefGoogle Scholar
  23. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol 64(9):1355–1374.  https://doi.org/10.1016/s0006-2952(02)01074-2 CrossRefGoogle Scholar
  24. Kwon J-H, Liljestrand HM, Katz LE (2007) Partitioning thermodynamics of selected endocrine disruptors between water and synthetic membrane vesicles: effects of membrane compositions. Environ Sci Technol 41(11):4011–4018.  https://doi.org/10.1021/es0618200 CrossRefGoogle Scholar
  25. Meyer MC, Guttman DE (1970) Dynamic dialysis as a method for studying protein binding II: evaluation of the method with a number of binding systems. J Pharm Sci 59(1):39–48.  https://doi.org/10.1002/jps.2600590105 CrossRefGoogle Scholar
  26. Mielke H, Di Consiglio E, Kreutz R, Partosch F, Testai E, Gundert-Remy U (2017) The importance of protein binding for the in vitro–in vivo extrapolation (IVIVE)—example of ibuprofen, a highly protein-bound substance. Arch Toxicol 91(4):1663–1670.  https://doi.org/10.1007/s00204-016-1863-z CrossRefGoogle Scholar
  27. Neale PA, Altenburger R, Aït-Aïssa S et al (2017) Development of a bioanalytical test battery for water quality monitoring: fingerprinting identified micropollutants and their contribution to effects in surface water. Water Res 123:734–750.  https://doi.org/10.1016/j.watres.2017.07.016 CrossRefGoogle Scholar
  28. Newton DW, Kluza RB (1978) pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother 12(9):546–554.  https://doi.org/10.1177/106002807801200906 Google Scholar
  29. Ottiger C, Wunderli-Allenspach H (1997) Partition behaviour of acids and bases in a phosphatidylcholine liposome–buffer equilibrium dialysis system. Eur J Pharm Sci 5(4):223–231.  https://doi.org/10.1016/S0928-0987(97)00278-9 CrossRefGoogle Scholar
  30. Paini A, Sala Benito JV, Bessems J, Worth AP (2017) From in vitro to in vivo: integration of the virtual cell based assay with physiologically based kinetic modelling. Toxicol In Vitro 45:241–248.  https://doi.org/10.1016/j.tiv.2017.06.015 CrossRefGoogle Scholar
  31. Pallicer JM, Kramer SD (2012) Evaluation of fluorescence anisotropy to assess drug-lipid membrane partitioning. J Pharm Biomed Anal 71:219–227.  https://doi.org/10.1016/j.jpba.2012.08.009 CrossRefGoogle Scholar
  32. Peltenburg H, Bosman IJ, Hermens JLM (2015) Sensitive determination of plasma protein binding of cationic drugs using mixed-mode solid-phase microextraction. J Pharm Biomed Anal 115:534–542.  https://doi.org/10.1016/j.jpba.2015.08.002 CrossRefGoogle Scholar
  33. ter Laak TL, Barendregt A, Hermens JLM (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ Sci Technol 40(7):2184–2190.  https://doi.org/10.1021/es0524548 CrossRefGoogle Scholar
  34. van der Heijden SA, Jonker MTO (2009) Evaluation of liposome-water partitioning for predicting bioaccumulation potential of hydrophobic organic chemicals. Environ Sci Technol 43(23):8854–8859.  https://doi.org/10.1021/es902278x CrossRefGoogle Scholar
  35. Wambaugh JF, Hughes MF, Ring CL et al (2018) Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol Sci 163(1):152–169.  https://doi.org/10.1093/toxsci/kfy020 CrossRefGoogle Scholar
  36. Wang XJ, Hayes JD, Wolf CR (2006) Generation of a stable antioxidant response element–driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer Res 66(22):10983–10994.  https://doi.org/10.1158/0008-5472.can-06-2298 CrossRefGoogle Scholar
  37. Yamazaki K, Kanaoka M (2004) Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci 93(6):1480–1494.  https://doi.org/10.1002/jps.20059 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cell ToxicologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  2. 2.Environmental Toxicology, Center for Applied GeoscienceEberhard Karls University TübingenTübingenGermany

Personalised recommendations