Advertisement

Medicines associated with folate–homocysteine–methionine pathway disruption

  • M. Vidmar
  • J. Grželj
  • I. Mlinarič-Raščan
  • K. Geršak
  • M. Sollner Dolenc
Review Article
  • 55 Downloads

Abstract

Folate is vital for cell development and growth. It is involved in one-carbon transfer reactions essential for the synthesis of purines and pyrimidines. It also acts in conjunction with cobalamin (vitamin B12) as a fundamental cofactor in the remethylation cycle that converts homocysteine to methionine. A deficiency in folate or vitamin B12 can lead to elevated homocysteine level, which has been identified as an independent risk factor in several health-related conditions. Adequate folate levels are essential in women of childbearing age and in pregnant women, and folate deficiency is associated with several congenital malformations. Low folate levels can be caused by dietary deficiencies, a genetic predisposition or treatment with medicines that affect folate concentration. Women who are pregnant or of child-bearing age commonly use medicines, so it is important to identify the basic biochemical mechanisms by which medicines interfere with the folate–homocysteine–methionine pathway. This review focuses on prescription medicines associated with folate disruption. It also summarizes their undesirable/toxic effects. Recommendations regarding folate supplementation during medical therapy are also reviewed.

Keywords

Folate–homocysteine–methionine pathway Folate antagonism Anti-folates Folate supplementation Toxicity 

Notes

Acknowledgements

This work was supported by the Slovenian Research Agency Grant (no. P3-0124). We thank Tomaž Janez Bevec for proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Adjei AA (2003) Pemetrexed (Alimta): a novel multitargeted antifolate agent. Expert Rev Anticancer Ther 3(2):145–156.  https://doi.org/10.1586/14737140.3.2.145 PubMedGoogle Scholar
  2. Agbenorku P (2013) Review article. Orofacial clefts: a worldwide review of the problem. ISRN Plast Surg 1–7.  https://doi.org/10.5402/2013/348465 Google Scholar
  3. Aghamohammadi V, Gargari BP, Aliasgharzadeh A (2011) Effects of folic acid supplementation on homocysteine, serum total antioxidant capacity, and malondialdehyde in patients with type 2 diabetes mellitus. J Am Coll Nutr 30(3):210–215.  https://doi.org/10.1080/07315724.2011.10719962 PubMedGoogle Scholar
  4. Alati T, Worzalla JF, Shih C, Bewley JR, Lewis S, Moran RG, Grindey GB (1996) Augmentation of the therapeutic activity of lometrexol [(6R)5,10-dideazatetrahydrofolate] by oral folic acid. Cancer Res 56:2331–2335PubMedGoogle Scholar
  5. Allen RH, Stabler SP, Savage DG, Lindenbaum J (1990) Diagnosis of cobalamin deficiency I: usefulness of serum methylmalonic acid and total homocysteine concentrations. Am J Hematol 34:90–98.  https://doi.org/10.1002/ajh.2830340204 PubMedGoogle Scholar
  6. American Academy of Neurology (2009) An summary of evidence-based guideline for patients and their families. Drug risks and safety during pregnancy, women with epilepsy. American Academy of Neurology, New YorkGoogle Scholar
  7. Apeland T, Mansoor MA, Strandjord RE (2001a) Antiepileptic drugs as independent predictors of plasma total homocysteine levels. Epilepsy Res 47(1–2):27–35.  https://doi.org/10.1016/S0920-1211(01)00288-1 PubMedGoogle Scholar
  8. Apeland T, Mansoor MA, Strandjord RE, Vefring H, Kristensen O (2001b) Folate, homocysteine and methionine loading in patients on carbamazepine. Acta Neurol Scand 103:294–299.  https://doi.org/10.1034/j.1600-0404.2001.103005294.x PubMedGoogle Scholar
  9. Arakawa T, Honda Y, Narisawa K (1973) Mechanism of decrease in serum folate levels of rats receiving diphenylhydantoin. Tohoku J Exp Med 111(3):203–210.  https://doi.org/10.1620/tjem.111.203 PubMedGoogle Scholar
  10. Arcot J, Shrestha A (2005) Folate: methods of analysis. Trends Food Sci Technol 16(6–7):253–266.  https://doi.org/10.1016/j.tifs.2005.03.013 Google Scholar
  11. Attilakos A, Papakonstantinou E, Schulpis K, Voudris K, Katsarou E, Mastroyianni S, Garoufi A (2006) Early effect of sodium valproate and carbamazepine monotherapy on homocysteine metabolism in children with epilepsy. Epilepsy Res 71(2–3):229–232.  https://doi.org/10.1016/j.eplepsyres.2006.06.015 PubMedGoogle Scholar
  12. Avendaño C, Menédez JC (2008) Medicinal chemistry of anticancer drugs. Chapter 2—Antimetabolites, pp 9–52Google Scholar
  13. Baggott JE, Morgan SL, Ha T, Vaughn WH, Hine RJ (1992) Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J 282(Pt 1):197–202.  https://doi.org/10.1042/bj2820197 PubMedPubMedCentralGoogle Scholar
  14. Bailey N, Humphreys A, Laohavinij S, Lind M, Robson L, Calvert A (1995) Oral folic acid improves lometrexol toxicity profile: a phase I study. Eur J Cancer 31(6):S193–S194Google Scholar
  15. Bajetta E, Celio L, Buzzoni R, Ferrari L, Marchianó A, Martinetti A, Longarini R, Becerra C, Ilardi C, John W (2003) Phase II study of pemetrexed disodium (Alimta) administered with oral folic acid in patients with advanced gastric cancer. Ann Oncol 14(10):1543–1548.  https://doi.org/10.1093/annonc/mdg406 PubMedGoogle Scholar
  16. Belcastro V, Striano P, Gorgone G, Costa C, Ciampa C, Caccamo D, Pisani LR, Oteri G, Marciani MG, Aguglia U, Striano S, Ientile R, Calabresi P, Pisani F (2010) Hyperhomocysteinemia in epileptic patients on new antiepileptic drugs. Epilepsia 51(2):274–279.  https://doi.org/10.1111/j.1528-1167.2009.02303.x PubMedGoogle Scholar
  17. Blom HJ (2009) Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol 85(4):295–302.  https://doi.org/10.1002/bdra.20581 PubMedGoogle Scholar
  18. Bottiglieri T (2005) Homocysteine and folate metabolism in depression. Prog Neuro-Psyhopharmacol Biol Psychiatry 29:1103–1112.  https://doi.org/10.1016/j.pnpbp.2005.06.021 Google Scholar
  19. Bottiglieri T, Reynolds E (2010) Folate and neurological disease, basic mechanisms. Folate in health and diseases, 2nd edn. Taylor & Francis Group LLC, London, pp 355–380Google Scholar
  20. Brito LA (2012) Review article: Genetics and management of the patient with orofacial cleft. Plast Surg Int 1–11.  https://doi.org/10.1155/2012/782821 Google Scholar
  21. Brouwer IA, van Dusseldorp M, West CE, Meyboom S, Thomas CM, Duran M, van het Hof KH, Eskes TK, Hautvast JG, Steegers-Theunissen RP (1999) Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. J Nutr 129(6):1135–1139.  https://doi.org/10.1093/jn/129.6.1135 PubMedGoogle Scholar
  22. Brunet L, Miranda J, Farré M, Berini L, Mendieta C (1996) Gingvial enlargement induced by drugs. Drug Saf 15:219–231PubMedGoogle Scholar
  23. Busti AJ (2017) Medications know to decrease vitamin B12 levels. https://www.ebmconsult.com/articles/vitamin-b12-medication-interactions-lower-levels. Accessed 9 Aug 2017
  24. Canfield MA, Collins JS, Botto LD, Williams LJ, Mai CT, Kirby RS, Pearson K, Devine O, Mulinare J (2005) Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: Findings from a multi-state population-based study. Birth Defects Res A Clin Mol Teratol 73:679–689.  https://doi.org/10.1002/bdra.20210 PubMedGoogle Scholar
  25. Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Ann Rev Biochem 64:721–762.  https://doi.org/10.1146/annurev.bi.64.070195.003445 PubMedGoogle Scholar
  26. Chen CP (2008) Syndromes, disorders and maternal risk factors associated with neural tube defects (II). Taiwan J Obstet Gynecol 47:10–17.  https://doi.org/10.1016/S1028-4559(08)60122-9 PubMedGoogle Scholar
  27. Clarke SJ, Beale PJ, Rivory LP (2000) Clinical and preclinical pharmacokinetics of raltitrexed. Clin Pharmacokinet 39(6):429–443.  https://doi.org/10.2165/00003088-200039060-00004 PubMedGoogle Scholar
  28. Cody V, Schwalbe CH (2006) Structural characteristics of antifolate dihydrofolate reductase enzyme interactions. Crystallogr Rev 12(4):301–333.  https://doi.org/10.1080/08893110701337727 Google Scholar
  29. Cody V, Galitsky N, Rak D, Luft JR, Pangborn W, Queener SF (1999) Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+. Biochemistry 38:4303.  https://doi.org/10.1021/bi982728m PubMedGoogle Scholar
  30. Cole PD, Kamen BA, Bertino JR (2010) Section 13: Chemotherapeutic agents. In: Frei H (ed) Cancer medicine, 8th edn. People’s Medical Publishing House, Shelton, pp 611–621Google Scholar
  31. Corominas-Faja B, Quirantes-Piné R, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Martin-Castillo B, Micol V, Joven J, Segura-Carretero A, Menendez JA (2012) Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging (Albany NY) 4(7):480–498.  https://doi.org/10.18632/aging.100472 Google Scholar
  32. Crandall BF, Corson VL, Evans MI, Goldberg JD, Knight G, Salafsky IS (1998) American College of Medical Genetics statement on folic acid: fortification and supplementation. Am J Med Genet 78(4):381PubMedGoogle Scholar
  33. Csáky-Szunyogh M, Vereczkey A, Kósa Z, Czeizel AE (2013) Association of maternal diseases during pregnancy with the risk of single ventricular septal defects in the offspring- a population-based case-control study. J Matern Fetal Neonatal Med 26(8):738–747.  https://doi.org/10.3109/14767058.2012.755170 PubMedGoogle Scholar
  34. Czeizel AE, Dudás I, Paput L, Bánhidy F (2011) Prevention of neural-tube defects with perisonceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab 58(4):263–271.  https://doi.org/10.1159/000330776 PubMedGoogle Scholar
  35. Dansky LV, Andermann E, Rosenblatt D, Sherwin AL, Andermann F (1987) Anticonvulsants, folate levels, and pregnancy outcome: a prospective study. Ann Neurol 21(2):176–182.  https://doi.org/10.1002/ana.410210210 PubMedGoogle Scholar
  36. Dastur DK, Dave UP (1987) Effect of prolonged anticonvulsant medication in epileptic patients: serum lipids, vitamins B6, B12, and folic acid, proteins, and fine structure of liver. Epilepsia 28(2):147–159.  https://doi.org/10.1111/j.1528-1157.1987.tb03641.x PubMedGoogle Scholar
  37. De Mattia E, Toffoli G (2009) C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer 45(8):1333–1351.  https://doi.org/10.1016/j.ejca.2008.12.004 PubMedGoogle Scholar
  38. de Vries EG, Gietema JA, Workman P, Scott JE, Crawshaw A, Dobbs HJ, Dennis I, Mulder NH, Sleijfer DT, Willemse PH (1993) A phase II and pharmacokinetic study with oral piritrexim for metastatic breast cancer. Br J Cancer 68(3):641–644PubMedPubMedCentralGoogle Scholar
  39. De Wit R, Kaye SB, Roberts JT, Stoter G, Scott J, Verweij J (1993) Oral piritrexim, an effective treatment for metastatic urothelial cancer. Br J Cancer 67(2):388–390PubMedPubMedCentralGoogle Scholar
  40. de Jager J, Kooy A, Lehert P, Wulffelé MG, van der Kolk J, Bets D, Verburg J, Donker AJ, Stehouwer CD (2010) Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomized placebo controlled trial. BMJ 340:c2181.  https://doi.org/10.1136/bmj.c2181 PubMedPubMedCentralGoogle Scholar
  41. De-Regil LM, Fernández-Gaxiola AC, Dowswell T, Peña-Rosas JP (2010) Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst Rev CD007950.  https://doi.org/10.1002/14651858.CD007950.pub2 Google Scholar
  42. DeSoto MC, Hitlan R (2012) Synthetic folic acid supplementation during pregnancy may increase the risk of developing autism. J Pediatr Biochem 2(4):251–261.  https://doi.org/10.3233/JPB-120066 Google Scholar
  43. Desouza C, Keebler M, McNamara DB, Fonseca V (2002) Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 62(4):605–616PubMedGoogle Scholar
  44. Dierkes J, Luley C, Westphal S (2007) Effect of lipid-lowering and anti-hypertensive drugs on plasma homocysteine levels. Vasc Health Risk Manag 3(1):99–108PubMedPubMedCentralGoogle Scholar
  45. Duch DS, Edelstein MP, Bowers SW, Nichol CA (1982) Biochemical and chemotherapeutic studies on 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d] pyrimidine (BW 301 U), a novel lipid-soluble inhibitor of dihydrofolate reductase. Cancer Res 42:3987–3994PubMedGoogle Scholar
  46. Durand P, Prost M, Blache D (1997) Folic acid deficiency enhances oral contraceptive-induced platelet hyperactivity. Arterioscler Thromb Vasc Biol 17(10):1939–1946PubMedGoogle Scholar
  47. Ekinci RMK, Balci S, Serbes M, Dogruel D, Altintas DU, Yilmaz M (2018) Decreased serum vitamin B12 and vitamin D levels affect sleep quality in children with familial mediterranean fever. Rheumatol Int 38(1):83–87.  https://doi.org/10.1007/s00296-017-3883-2 PubMedGoogle Scholar
  48. Eldeen ON, Eldayem SMA, Shatla RH, Omara NA, Elgammal SS (2012) Homocysteine, folic acid and vitamin B12 levels in serum of epileptic children. Egypt J Med Hum Genet 13(3):275–280.  https://doi.org/10.1016/j.ejmhg.2012.05.002 Google Scholar
  49. EMA (2017) New measures to avoid valproate exposure in pregnancy endorses. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Valproate_2017_31/Position_provided_by_CMDh/WC500246350.pdf. Accessed 25 Mar 2018
  50. EMA (2018b) Europa. Summary of the product characteristics: Jylamvo. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003756/WC500225925.pdf. Accesed 17 Mar 2018
  51. EMA (2018c) Pralaterexate European public assesment report. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Public_assessment_report/human/002096/WC500129886.pdf. Accessedd 18 Mar 2018
  52. eMC (2018a) Salazopyrin En-Tabs. https://www.medicines.org.uk/emc/product/6686/smpc. Accessed 18 Mar 2018
  53. eMC (2018b) Questran powder for oral suspension 4 g. Bristol-Myers Squibb Pharmaceutical Limited. https://www.medicines.org.uk/emc/product/5715/smpc. Accessed 20 June 2018
  54. eMC (2018c) Tegretol liquid 100 mg/5 mL. Novartis Pharmaceuticals UK Ltd. https://www.medicines.org.uk/emc/product/1041/smpc. Accessed 20 June 2018
  55. eMC (2018d) Cilest 35/250 micrograms film-coated tablets. Janssen-Cilag Ltd. https://www.medicines.org.uk/emc/product/6900/smpc. Accessed 20 June 2018
  56. eMC (2018e) Aidulan 20/75 microgram film-coated tablets. Lupin Healthcare (UK) Ltd. https://www.medicines.org.uk/emc/product/5079/smpc. Accessed 20 June 2018
  57. eMC (2018f) Loestrin 20. Galen Limited. https://www.medicines.org.uk/emc/product/1060/smpc. Accessed 20 June 2018
  58. eMC (2018g) Tagamet 200 mg tablets. Chemidex Pharma Ltd. https://www.medicines.org.uk/emc/product/6493/smpc. Accessed 20 June 2018
  59. eMC (2018h) Primidone 250 mg tablet. SERB. https://www.medicines.org.uk/emc/product/2940/smpc. Accessed 20 June 2018
  60. eMC (2018i) Phenobarbital Accord 15 mg tablets. Accord-UK Ltd. https://www.medicines.org.uk/emc/product/2057/smpc. Accessed 20 June 2018
  61. eMC (2018j) Epanutin Infatabs. Pfizer Limited. https://www.medicines.org.uk/emc/product/2259/smpc. Accessed 20 June 2018
  62. eMC (2018k) Trimethoprim 200 mg tablets. Aurobindo Pharma-Milpharm Ltd. https://www.medicines.org.uk/emc/product/7042/smpc. Accessed 20 June 2018
  63. Eunice Kennedy Shriver Nation Institute of Children Health and Human Development (NIH) (2017) Neural tube defects (NTDs): condition information. https://www.nichd.nih.gov/health/topics/ntds/conditioninfo/default. Accessed 18 June 2018
  64. European Food Safety Authority (EFSA) (2014) Scientific opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 12:1–227.  https://doi.org/10.2903/j.efsa.2014.3894 Google Scholar
  65. Fathe K, Palacios A, Finnell RH (2014a) Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res A Clin Mol Teratol 100(8):592–597.  https://doi.org/10.1002/bdra.23277 PubMedPubMedCentralGoogle Scholar
  66. Fathe K, Palacios A, Finnell RH (2014b) Novel mechanism for valproate-induced teratogenicity. Birth Defects A Clin Mol Teratol 100(8):592–597.  https://doi.org/10.1002/bdra.23277 Google Scholar
  67. FDA Label (2009) Folotyn (pralatrexate injection). https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022468lbl.pdf. Accessed 18 March 2018
  68. FDA Label (2017a) DARAPRIM (pyrimethamine). https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/008578s020lbl.pdf. Accessed 18 Mar 2018
  69. FDA Label (2017b) BEYAZ (drospirenone/ethinyl estradiol/levomefolate calcium tablets and levomefolate calcium tablets), for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022532s009lbl.pdf. Accessed 2 Apr 2018
  70. FDA Label (2017c) Glucophage (metformin hydrochloride). https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020357s037s039,021202s021s023lbl.pdf. Accessed 2 Apr 2018
  71. FDA Label (2018) Dapakote ER (divalpreoex sodium) extended-release tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021168s038lbl.pdf. Accessed 20 June 2018
  72. Force RW, Nahata MC (1992) Effect of histamine H2-receptor antagonists on vitamin B12 absorption. Ann Pharmacother 26(10):1283–1286.  https://doi.org/10.1177/106002809202601018 PubMedGoogle Scholar
  73. Gatford KL, Houda CM, Lu ZX, Coat S, Baghurst PA, Owens JA, Sikaris K, Rowan JA, Hague WM (2013) Vitamin B12 and homocysteine status during pregnancy in the metformin in gestational diabetes trial: responses to maternal metformin compared with insulin treatment. Diabetes Obes Metab 15(7):660–667.  https://doi.org/10.1111/dom.12080 PubMedGoogle Scholar
  74. Geda G, Caksen H, Içağasioğlu D (2002) Serum lipids, vitamin B12 and folic acid levels in children receiving long-term valproate therapy. Acta Neurol Belg 102(3):122–126PubMedGoogle Scholar
  75. Gemici AI, Sevindik ÖG, Akar S, Tunca M (2013) Vitamin B12 levels in familial mediterranean fever patients treated with colchicine. Clin Exp Rheumatol 31(3):57–59PubMedGoogle Scholar
  76. Gervasio JM (2010) Drug-induced changes to nutritional status. In: Boullata JI, Armenti VT (eds) Handbook of drug-nutrient interactions, 2nd edn, pp 423–445Google Scholar
  77. Gidal BE, Tamura T, Hammer A, Vuong A (2005) Blood homocysteine, folate and vitamin B-12 concentrations in patients with epilepsy receiving lamotrigine or sodium valproate for initial monotherapy. Epilepsy Res 64(3):161–166.  https://doi.org/10.1016/j.eplepsyres.2005.03.005 PubMedGoogle Scholar
  78. Gil-da-Silva-Lopes VL, Lopes Monlleó I (2013) Risk factor and the prevention of oral clefts. In: 18th congress of the Brazilian Association for Oral Health Promotion, pp 1–5.  https://doi.org/10.1590/S1806-83242014.50000008 PubMedGoogle Scholar
  79. Girdwood RH (1973) Trimethoprim/sulphamethoxazole: long-term therapy and folate levels. Med J Aust (Suppl) 1:34–36Google Scholar
  80. Gish RH, Porta C, Lazar L, Ruff P, Feld R, Croitoru A, Feun L, Jeziorski K, Leighton J, Gallo J, Kennealey GT (2007) Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J Clin Oncol 25(21):3069–3075.  https://doi.org/10.1200/JCO.2006.08.4046 PubMedGoogle Scholar
  81. Green TJ, Houghton LA, Donovan U, Gibson RS, O’Connor DL (1998) Oral contraceptives did not affect biochemical folate indexes and homocysteine concentrations in adolescent females. J Am Diet Assoc 98:49–55.  https://doi.org/10.1016/S0002-8223(98)00014-5 PubMedGoogle Scholar
  82. Habeck LL, Leitner TA, Shackelford KA, Gossett LS, Schultz RM, Andis SL, Shih C, Grindey GB, Mendelsohn LG (1994) A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. Cancer Res 54(4):1021–1026PubMedGoogle Scholar
  83. Hagner N, Joerger M (2010) Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res 2:293–301.  https://doi.org/10.2147/CMR.S10043 PubMedPubMedCentralGoogle Scholar
  84. Halwachs S, Kneuer C, Honscha W (2007) Downregulation of the reduced folate carrier transport activity by phenobarbital-type cytochrome P450 inducers and protein kinase C activators. Biochim Biophys Acta 1768(6):1671–1679.  https://doi.org/10.1016/j.bbamem.2007.03.023 PubMedGoogle Scholar
  85. Halwachs S, Lakoma C, Schäfer I, Seibei P, Honscha W (2011) The antiepileptic drugs phenobarbital and carbamazepine reduce transport of methotrexate in rat choroid plexus by down-regulation of the reduced folate carrier. Mol Pharmacol 80(4):621–629.  https://doi.org/10.1124/mol.111.072421 PubMedGoogle Scholar
  86. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA (2000) Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 343:1608–1614.  https://doi.org/10.1056/NEJM200011303432204 PubMedGoogle Scholar
  87. Hiraoka M, Kagawa Y (2017) Genetic polymorphisms and folate status. Congenit Amon (Kyoto) 57(5):142–149.  https://doi.org/10.1111/cga.12232 Google Scholar
  88. Hitchings GH, Burchall JJ (1965) Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol Relat Areas Mol Biol 27:417–468PubMedGoogle Scholar
  89. Holmes LB, Wyszynski DF, Lieberman E (2004) The AED (antiepileptic drug) pregnancy registry: a 6-year experience. Arch Neurol 61(5):673–678.  https://doi.org/10.1001/archneur.61.5.673 PubMedGoogle Scholar
  90. Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82:806–812.  https://doi.org/10.1093/ajcn/82.4.806 Google Scholar
  91. Honein MA, Gilboa SM, Broussard CS (2013) The need for safer medication use in pregnancy. Expert Rev Clin Pharmacol 6(5):453–455.  https://doi.org/10.1586/17512433.2013.827401 PubMedPubMedCentralGoogle Scholar
  92. Hughes A, Calvert AH (1999) Preclinical and clinical studies with the novel thymidylate synthase inhibitor nolatrexed dihydrochloride (Thymitaq™, AG337). In: Jackman AL (ed) Antifolate drugs in cancer therapy. Cancer drug discovery and development. Humana Press, TotowaGoogle Scholar
  93. Isojärvi JIT, Pakarinen AJ, Myllylä VV (1997) Basic haematological parameters, serum gamma-glutamyl-transferase activity, and erythrocyte folate and serum vitamin B12 levels during carbamazepine and oxcarbazepine therapy. Seizure 6(3):201–211.  https://doi.org/10.1016/S1059-1311(97)80007-6 Google Scholar
  94. IUPAC-IUB Commission on Biochemical Nomenclature (1965) Nomenclature and symbols for folic acid and related compounds. Biochim Biophys Acta 107:11–13.  https://doi.org/10.1111/j.1432-1033.1987.tb13413.x Google Scholar
  95. Jansen G, van der Heijden J, Oerlemans R, Lems WF, Ifergan I, Scheper RJ, Assaraf YG, Dijkmans BA (2004) Sulfasalazine is a potent inhibitor of the reduced folate carrier: implications for combination therapies with methotrexate in rheumatoid arthritis. Arthritis Rheum 50(7):2130–2139.  https://doi.org/10.1002/art.20375 PubMedGoogle Scholar
  96. Jhawer M, Rosen L, Dancey J, Hochster H, Hamburg S, Tempero M, Clendeninn N, Mani S (2007) Phase II trial of nolatrexed dihydrochloride [Thymitaq, AG 337] in patients with advanced hepatocellular carcinoma. Investig New Drugs 25(1):85–94.  https://doi.org/10.1007/s10637-006-9003-x Google Scholar
  97. Johnson MA, Hawthorne NA, Brackett WR, Fischer JG, Gunter EW, Allen RH, Stabler SP (2003) Hyperhomocysteinemia and vitamin B-12 deficiency in elderly using title IIIc nutrition services. Am J Clin Nutr 77(1):211–220.  https://doi.org/10.1093/ajcn/77.1.211 PubMedGoogle Scholar
  98. Jolivet J, Jansen G, Peters GJ, Pinard MF, Schornagel JH (1994) Leucovorin rescue of human cancer and bone marrow cells following edatrexate or methotrexate. Biochem Pharmacol 47(4):659–665.  https://doi.org/10.1016/0006-2952(94)90128-7 PubMedGoogle Scholar
  99. Kahn SB, Fein SA, Brodsky I (1968) Effects of trimethoprim on folate metabolism in man. Clin Pharmacol Ther 9(5):550–560.  https://doi.org/10.1002/cpt196895550 PubMedGoogle Scholar
  100. Källén B (2003) Maternal drug use and infant cleft lip/palate with special reference to corticoids. Cleft Palate Craniofac J 40(6):624–628.  https://doi.org/10.1597/02-077 PubMedGoogle Scholar
  101. Kamen BA, Eibl B, Cashmore A, Bertino J (1984) Uptake and efficacy of trimetrexate (TMQ, 2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl] quinazoline), a non-classical antifolate in methotrexate-resistant leukemia cells in vitro. Biochem Pharmacol 33(10):1697–1699.  https://doi.org/10.1016/0006-2952(84)90298-3 PubMedGoogle Scholar
  102. Kampman MT (2007) Folate status in women of childbearing age with epilepsy. Epilepsy Res 75(1):52–56.  https://doi.org/10.1016/j.eplepsyres.2007.04.003 PubMedGoogle Scholar
  103. Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S (2003) Effects of valproate and carbamazepine on serum levels of homocysteine, vitamin B12, and folic acid. Brain Dev 25(2):113–115.  https://doi.org/10.1016/S0387-7604(02)00163-8 PubMedGoogle Scholar
  104. Karalliedde L, Clarke SFJ, Collignon U, Karalliedde J (2010) Adverse drug interactions: a handbook for prescribers. Drugs to treat infections antibiotics—other antibiotics. CRC Press, London, pp 549–550Google Scholar
  105. Karas Kuželički N, Šmid A, Kek T, Eberlinc A, Geršak K, Mlinarič-Raščan I (2018) Common polymorphism in the glycine N-methyltransferase gene as a novel risk factor for cleft lip with or without cleft palate. Int J Oral Maxillofac Surg 1–8.  https://doi.org/10.1016/j.ijom.2018.06.001 PubMedGoogle Scholar
  106. Kim YL (2003) Role of folate in colon cancer development in progression. J Nutr 133(11):3731S–3739S.  https://doi.org/10.1093/jn/133.11.3731S PubMedGoogle Scholar
  107. Kishi T, Fujita N, Eguchi T, Ueda K (1997) Mechanism for reduction of serum folate by antiepileptic drugs during prolonged therapy. J Neurol Sci 145:109–112.  https://doi.org/10.1016/S0022-510X(96)00256-0 PubMedGoogle Scholar
  108. Klipstein FA (1964) Subnormal serum folate and macrocytosis associated with anticonvulsant drug therapy. Blood 23:68–86PubMedGoogle Scholar
  109. Koehn EM, Perissinotti LL, Moghram S, Prabhakar A, Lesley SA, Mathews II, Kohen A (2012) Folate binding site of flavin-dependent thymidylate synthase. Proc Natl Acad Sci USA 109(39):15722–15727.  https://doi.org/10.1073/pnas.1206077109 PubMedGoogle Scholar
  110. Kremer JM, Galivan J, Streckfuss A, Kamen B (1986) Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients. Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum 29(7):832–835.  https://doi.org/10.1002/art.1780290703 PubMedGoogle Scholar
  111. Lam JR, Schneidej JL, Zhao W, Corley DA (2013) Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. JAMA 310(22):2435–2442.  https://doi.org/10.1001/jama.2013.280490 PubMedGoogle Scholar
  112. Lambie DG, Johnson RH (1985) Drugs and folate metabolism. Drugs 30(2):145–155PubMedGoogle Scholar
  113. Larsson SC, Giovannucci E, Wolk A (2006) Folate intake, MTHFR polymorphisms, and a risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 131:1271–1283.  https://doi.org/10.1053/j.gastro.2006.08.010 PubMedGoogle Scholar
  114. Larsson SC, Giovannucci E, Wolk A (2007) Folate and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 99:64–76.  https://doi.org/10.1093/jnci/djk006 PubMedGoogle Scholar
  115. Levine SZ, Kodesh A, Viktorin A, Smith L, Uher R, Reichenberg A, Sandin S (2018) Association of maternal use of folic acid and multivitamin supplements in the period before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiatry 75(2):176–184.  https://doi.org/10.1001/jamapsychiatry.2017.4050 PubMedGoogle Scholar
  116. Lewis DP, Van Dyke DC, Stumbo PJ, Berg MJ (1998) Drug and environmental factors associated with adverse pregnancy outcomes. Part I: Antiepileptic drugs, contraceptives, smoking, and folate. Ann Pharmacother 32(7–8):802–817.  https://doi.org/10.1345/aph.17297 PubMedGoogle Scholar
  117. Li Z, Ren A, Zhang L, Ye R, Li S, Zheng J, Hong S, Wang T, Li Z (2006) Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol 76:237–240.  https://doi.org/10.1002/bdra.20248 PubMedGoogle Scholar
  118. Li WX, Cheng F, Zhang AJ, Dai SX, Li GH, Lv WW, Zhou T, Zhang Q, Zhang H, Zhang T, Liu F, Liu D, Huang JF (2017) Folate deficiency and gene polymorphisms of MTHFR, MTR and MTRR elevate the hyperhomocysteinemia risk. Clin Lab 63(3):523–533.  https://doi.org/10.7754/Clin.Lab.2016.160917 PubMedGoogle Scholar
  119. Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10.  https://doi.org/10.1016/j.ejmg.2014.10.004 PubMedGoogle Scholar
  120. Lindenbaum J, Whitehead N, Reyner F (1975) Oral contraceptive hormones, folate metabolism, and the cervical epithelium. Am J Clin Nutr 28(4):346–353.  https://doi.org/10.1093/ajcn/28.4.346 PubMedGoogle Scholar
  121. Linnebank M, Moskau S, Semmler A, Widman G, Stoffel-Wagner B, Weller M, Elger CE (2011) Antiepileptic drugs interact with folate and vitamin B12 serum levels. Ann Neurol 69(2):352–359.  https://doi.org/10.1002/ana.22229 PubMedGoogle Scholar
  122. Linus Pauling Institute—Micronutrient Information Center (2016) Folate. http://lpi.oregonstate.edu/mic/vitamins/folate#drug-interactions.Accessed 21 Apr 2016
  123. Lloyd KA (2013) A scientific review: mechanisms of valproate-mediated teratogenesis. Biosci Horiz 6:1–10.  https://doi.org/10.1093/biohorizons/hzt003 Google Scholar
  124. Luo YL (2012) Association between MTHFR polymorphisms and orofacial cleft risk: a meta-analysis. Birth Defects Res A Clin Mol Teratol 94(4):237–244.  https://doi.org/10.1002/bdra.23005 PubMedGoogle Scholar
  125. Lussana F, Zighetti ML, Bucciarelli P, Cugno M, Cattaneo M (2003) Blood levels of homocysteine, folate, vitamin B6 and B12 in women using oral contraceptives compared to non-users. Thromb Res 112(1–2):37–41.  https://doi.org/10.1016/j.thromres.2003.11.007 PubMedGoogle Scholar
  126. Mader MM, Henry JR (2007) Reference module in chemistry, molecular sciences and chemical engineering. Comprehensive medicinal chemistry II. 7.03—antimetabolites. Lilly Research Laboratories, Indianapolis, pp 55–79Google Scholar
  127. Mahmood L (2014) The metabolic processes of folic acid and vitamin B12 deficiency. J Health Res Rev 1:5–9.  https://doi.org/10.4103/2394-2010.143318 Google Scholar
  128. Mahmoud LB, Mdhaffar M, Frikha R, Ghozzi H, Hakim A, Sahnoun Z, Elloumi M, Zeghal K (2018) Use of MTHFR C677T polymorphism and plasma pharmacokinetics to predict methotrexate toxicity in patients with acute lymphoblastic leukemia. Adv Clin Exp Med.  https://doi.org/10.17219/acem/69802 PubMedGoogle Scholar
  129. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172.  https://doi.org/10.1161/CIRCULATIONAHA.106.627224 PubMedGoogle Scholar
  130. Matherly LH, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastatis Rev 26(1):111–128.  https://doi.org/10.1007/s10555-007-9046-2 Google Scholar
  131. Matsui MS, Rozovski SJ (1982) Drug–nutrient interaction. Clin Ther 4(6):423–440PubMedGoogle Scholar
  132. Maughan T, James R, Kerr D, Ledermann J, McArdle C, Seymour M, Johnston C (2000) Excess treatment related deaths and impaired quality of life show raltitrexed is inferior to infusional 5FU regimen in the palliative chemotherapy of advanced colorectal cancer (CRC): final results of MRC CRO6 (abstract). Ann Oncol 11(Suppl 4):43Google Scholar
  133. Mawhinney E, Campbell J, Craig J, Russell A, Smithson W, Parsons L, Robertson I, Irwin B, Morrison P, Liggan B, Delanty N, Hunt S, Morrow J (2012) Valproate and the risk for congenital malformations: Is formulation and dosage regime important? Seizure 21(3):215–218.  https://doi.org/10.1016/j.seizure.2012.01.005 PubMedGoogle Scholar
  134. May RB, Sunder TR (1993) Hematologic manifestations of long-term valproate therapy. Epilepsia 34(6):1098–1101.  https://doi.org/10.1111/j.1528-1157.1993.tb02139.x PubMedGoogle Scholar
  135. McGuire JJ (2003) Anticancer antifolates: current status and future directions. Curr Pharm Des 9(31):2593–2613.  https://doi.org/10.2174/1381612033453712 PubMedGoogle Scholar
  136. McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8:37–55.  https://doi.org/10.1146/annurev.genom.7.080505.115648 PubMedGoogle Scholar
  137. Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C (2008) Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. Epilepsy Res 81(1):1–13.  https://doi.org/10.1016/j.eplepsyres.2008.04.022 PubMedPubMedCentralGoogle Scholar
  138. Medicines.ie (2018) Tomudex 2 mg powder for solution for infusion. http://www.medicines.ie/medicine/17124/SPC/Tomudex+2+mg+Powder+for+Solution+for+Infusion. Accessed 18 Mar 2018
  139. Meenan J, O´Hallinan E, Scott J, Weir DG (1996) Influence of sulfasalazine and olsalamine on colonic epithelial cell folate content in patients with ulcerative colitis. Inflamm Bowel Dis 2:163–167.  https://doi.org/10.1097/00054725-199609000-00001 PubMedGoogle Scholar
  140. Mendelsohn LG, Shih C, Schultz RM, Worzalla JF (1996) Biochemistry and pharmacology of glycinamide ribonucleotide formyltransferase inhibitors: LY309887 and lometrexol. Investig New Drugs 14(3):287–294Google Scholar
  141. Milman N (2012) Intersinal absorption of folic acid—new physiologic & molecular aspects. Indian J Med Res 136(5):725–728PubMedPubMedCentralGoogle Scholar
  142. Milstien S, Kapatos G, Levine RA, Shane B (2001) Chemistry and biology of pteridines and folates. In: Proceedings of the 12th international symposium on pteridines and folates. National Institutes of Health, Bethesda, 17–22 June 2001, pp 427–429Google Scholar
  143. Mischoulon D, Zajecka J, Freeman MP, Fava M (2016) Does folic acid interfere with lamotrigine? Lancet Psychiatry 3(8):704–705.  https://doi.org/10.1016/S2215-0366(16)30167-5 PubMedGoogle Scholar
  144. Morrell MJ (2002) Folic acid and epilepsy. Epilepsy Curr 2(2):31–34.  https://doi.org/10.1046/j.1535-7597.2002.00017.x PubMedPubMedCentralGoogle Scholar
  145. Morrow LE, Grimsley EW (1999) Long-term diuretic therapy in hypertensive patients: effects on serum homocysteine, vitamin B6, vitamin B12, and red blood cell folate concentrations. South Med J 92(9):866–870.  https://doi.org/10.1097/00007611-199909000-00003 PubMedGoogle Scholar
  146. Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, Irwin B, McGivern RC, Morrison PJ, Craig J (2006) Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 77:193–198.  https://doi.org/10.1136/jnnp.2005.074203 PubMedGoogle Scholar
  147. Morrow JI, Hunt SJ, Russell AJ, Smithson WH, Parsons L, Robertson I, Waddell R, Irwin B, Morrison PJ, Craig JJ (2009) Folic acid use and major congenital malformations in offspring of women with epilepsy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 80(5):506–511.  https://doi.org/10.1136/jnnp.2008.156109 PubMedGoogle Scholar
  148. Mulder B, Bijlsma MJ, Schuiling-Veninga CC, Morssink LP, van Puijenbroek E, Aarnoudse JG, Hak E, de Vries TW (2017) Risk versus benefits of medication use during pregnancy: what do women perceive? Patient Prefer Adherence 12:1–8.  https://doi.org/10.2147/PPA.S146091 PubMedPubMedCentralGoogle Scholar
  149. Nayyar AS, Nataraju B, Subhas GT (2012) Phenytoin–folate interactions: how far is safe folate supplementation in phenytoin treated epileptic patients? J Appl Pharm Sci 2(6):230–235.  https://doi.org/10.7324/JAPS.2012.2641 Google Scholar
  150. Nazki FH, Sameer AS, Ganaie BA (2014) Folate: metabolism, genes, polymorphisms and the associated diseases.Gene 533:11–20.  https://doi.org/10.1016/j.gene.2013.09.063 PubMedGoogle Scholar
  151. Ni G, Qin J, Li H, Chen Z, Zhou Y, Fang Z, Chen Y, Zhou J, Huang M, Zhou L (2015) Effects of antiepileptic drug monotherapy on one-carbon metabolism and DNA methylation in patients with epilepsy. PLoS One 10(4):e0125656.  https://doi.org/10.1371/journal.pone.0125656 PubMedPubMedCentralGoogle Scholar
  152. NICE (2016) National Institute for Health and Care Excellence. NICE guideline: epilepsies: diagnosis and management. https://www.nice.org.uk/guidance/cg137/chapter/1-Guidance#women-and-girls-with-epilepsy. Accessed 25 Mar 2018
  153. NIDDK U.S. (2017) National library of medicine: trimetrexate. https://livertox.nih.gov/Trimetrexate.htm. Accessed 22 Oct 2017
  154. NIH (2016a) Folate—dietary supplement fact sheet. https://ods.od.nih.gov/factsheets/Folate-HealthProfessional. Accessed 28 Jan 2016
  155. NIH (2016b) Lamotrigine. https://www.nlm.nih.gov/medlineplus/druginfo/meds/a695007.html. Accessed 6 May 2016
  156. NIH (2016d) Pyrimethamine. https://pubchem.ncbi.nlm.nih.gov/compound/pyrimethamine. Accessed 6 May 2016
  157. NIH (2016e) Sulfasalazine. https://www.nlm.nih.gov/medlineplus/druginfo/meds/a682204.html. Accessed 5 May 2016
  158. NIH (2016f) Triamterene and hydrochlorothiazide https://www.nlm.nih.gov/medlineplus/druginfo/meds/a601125.html. Accessed 5 May 2016
  159. NIH (2016g) Cholestyramine. https://www.nlm.nih.gov/medlineplus/druginfo/meds/a682672.html. Accessed 12 May 2016
  160. NIH (2016h) Metformin. https://www.nlm.nih.gov/medlineplus/druginfo/meds/a696005.html. Accessed 12 July 2016
  161. Norris RE, Adamson PC (2010) Clinical potency of methotrexate, aminopterin, talotrexin and pemetrexed in childhood leukemias. Cancer Chemother Pharmacol 65(6):1125–1130.  https://doi.org/10.1007/s00280-009-1120-8 PubMedGoogle Scholar
  162. Nzila A, Okombo J, Molloy AM (2014) Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methy-tetrahydrofolate. J Antimicrob Chemother 69(2):323–330.  https://doi.org/10.1093/jac/dkt394 PubMedGoogle Scholar
  163. Ono H, Sakamoto A, Eguchi T, Fujita N, Nomura S, Ueda H, Sakura N, Ueda K (1997) Plasma total homocysteine concentrations in epileptic patients taking anticonvulsants. Metabolism 46(8):959–962.  https://doi.org/10.1016/S0026-0495(97)90087-1 PubMedGoogle Scholar
  164. Ouma P, Parise ME, Hamel MJ, Ter Kuile FO, Otieno K, Ayisi JG, Kager PA, Steketee RW, Slutsker L, van Eijk AM (2006) A randomized controlled trial of folate supplementation when treating malaria in pregnancy with sulfadoxine-pyrimethamine. PLoS Clin Trials 1(6):e28.  https://doi.org/10.1371/journal.pctr.0010028 PubMedPubMedCentralGoogle Scholar
  165. Ozlu SG, Erguven M, Hamzah OY (2012) Do vitamin B12 levels need to be evaluated in FMF cases having long term colchicine treatment? Ann Paediatr Rheum 1(2):65–70.  https://doi.org/10.5455/apr.041020120631 Google Scholar
  166. Palomba S, Falbo A, Giallauria F, Russo T, Tolino A, Zullo F, Colao A, Orio F (2010) Effects of metformin with or without supplementation with folate on homocysteine levels and vascular endothelium of women with polycystic ovary syndrome. Diabetes Care 33(2):246–251.  https://doi.org/10.2337/dc09-1516 PubMedGoogle Scholar
  167. Palopoli JJ, Waxman J (1987) Colchicine neuropathy or vitamin B12 deficiency neuropath? N Eng. J Med 317:1290–1291.  https://doi.org/10.1056/NEJM198711123172012 Google Scholar
  168. Peters GJ, Hooijberg JH, Kaspers GJL, Jansen G (2005) Folates and antifolates in the treatment of cancer; role of folic acid supplementation on efficacy of folate and non-folate drugs. Trends Food Sci Technol 16:289–297.  https://doi.org/10.1016/j.tifs.2005.03.008 Google Scholar
  169. Petersen KM, Eplov K, Nielsen TK, Jimenez-Solem E, Petersen M, Broedbaek K, Popik SD, Hansen LK, Poulsen HE, Andersen JT (2016) The effect of trimethoprim on serum folate levels in humans: a randomized, double-blind, placebo-controlled trial. Am J Ther 23(2):e382–e387.  https://doi.org/10.1097/MJT.0000000000000372 PubMedGoogle Scholar
  170. Pietrzik K, Bailey L, Shane B (2010) Folic acid and l-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 49(8):535–548.  https://doi.org/10.2165/11532990-000000000-00000 PubMedGoogle Scholar
  171. Pizzorno G, Sokoloski JA, Cashmore AR, Moroson BA, Cross AD, Beardsley GP (1991) Intracellular metabolism of 5,10-dideazatetrahydrofolic acid in human leukemia cell lines. Mol Pharmacol 39(1):85–89PubMedGoogle Scholar
  172. Porter K, Hoey L, Hughes CF, Ward M, McNulty H (2016) Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 8(11):pii:E725.  https://doi.org/10.3390/nu8110725 Google Scholar
  173. Preece J, Reynolds EH, Johnson AL (1971) Relation of serum to red cell folate concentrations in drug-treated epileptic patients. Epilepsia 12(4):335–340.  https://doi.org/10.1111/j.1528-1157.1971.tb04381.x PubMedGoogle Scholar
  174. Quinlivan EP, McPartlin J, Weir DG, Scott J (2000) Mechanism of the antimicrobial drug trimethoprim revisited. FASEB J 14(15):2519–2524.  https://doi.org/10.1096/fj.99-1037com PubMedGoogle Scholar
  175. Raghavan R, Fallin MD, Wang X (2016) Maternal plasma folate, vitamin B12 levels and multivitamin supplementation during pregnancy and risk of autism spectrum disorder in the Boston birth cohort. FASEB J 30:151–156Google Scholar
  176. Raghavan R, Riley AW, Volk H, Caruso D, Hironaka L, Sices L, Hong X, Wang G, Ji Y, Brucato M, Wahl A, Stivers T, Pearson C, Zuckerman B, Stuart EA, Landa R, Fallin MD, Wang X (2018) Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol 32(1):100–111.  https://doi.org/10.1111/ppe.12414 PubMedGoogle Scholar
  177. Ray MS, Muggia FM, Leichman CG, Grunberg SM, Nelson RL, Dyke RW, Moran RG (1993) Phase I study of (6R)-5,10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 85(14):1154–1159.  https://doi.org/10.1093/jnci/85.14.1154 PubMedGoogle Scholar
  178. Rezaei S, Shab-Bidar S, Abdulahi Abdurahman A, Djafarian K (2017) Oxcarbazepine administration and the serum levels of homocysteine, vitamin B12 and folate in epileptic patients: a systematic review and meta-analysis. Seizure 45:87–94.  https://doi.org/10.1016/j.seizure.2016.11.016 PubMedGoogle Scholar
  179. Richens A, Waters AH (1971) Acute effect of phenytoin on serum folate concentration. Br J Pharmacol 41(2):415Google Scholar
  180. Roberts JD, Poplin EA, Tombes MB, Kyle B, Spicer DV, Grant S, Synold T, Moran R (2000) Weekly lometrexol with daily oral folic acid is appropriate for phase II evaluation. Cancer Chemother Pharmacol 45(2):103–110.  https://doi.org/10.1007/s002800050017 PubMedGoogle Scholar
  181. Rosowsky A (1999) PT523 and other aminopterin analogs with a hemiphthaloyl-l-ornithine side chain: exceptionally tight-binding inhibitors of dihydrofolate reductase which are transported by the reduced folate carrier but cannot form polyglutamates. Curr Med Chem 6(4):329–352PubMedGoogle Scholar
  182. Ruscin JM, Page RL, Valuck RJ (2002) Vitamin B(12) deficiency associated with histamine(2)-receptor antagonists and a proton-pump inhibitor. Ann Pharmacother 36(5):812–816.  https://doi.org/10.1345/aph.10325 PubMedGoogle Scholar
  183. Ryznychuk MO, Kryvchanska MI, Lastivka IV, Bulyk RY (2018) Incidence and risk factors of spina bifida in children. Wiad Lek 71:339–344PubMedGoogle Scholar
  184. Sakhri L, Pinsolle J, Moro-Sibilot D, Pluchart H (2017) Unusually prolonged pemeterxed cytotoxicity in a patient with a lung adenocarcinome: a case report. J Med Case Rep 11(1):262.  https://doi.org/10.1186/s13256-017-1436-7 PubMedPubMedCentralGoogle Scholar
  185. Sander JW, Patsalos PN (1992) An assessment of serum and red blood cell folate concentrations in patients with epilepsy on lamotrigine therapy. Epilepsy Res 13(1):89–92.  https://doi.org/10.1016/0920-1211(92)90011-H PubMedGoogle Scholar
  186. Sanjoaquin MA, Allen N, Couto E, Roddam AW. Key TJ (2005) Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 113:825–828.  https://doi.org/10.1002/ijc.20648 PubMedGoogle Scholar
  187. Sauer J, Mason BJ, Choi SW (2009) Too much folate—a risk factor for cancer and cardiovascular disease? Curr Opin Clin Nutr Metab Care 12(1):30–36.  https://doi.org/10.1097/MCO.0b013e32831cec62 PubMedPubMedCentralGoogle Scholar
  188. Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tassone F, Hertz-Picciotto I (2012) Maternal periconceptional folic acid intake and risk of autism spectrum disorders and development delay in the CHARGE (Children Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 96(1):80–89.  https://doi.org/10.3945/ajcn.110.004416 PubMedPubMedCentralGoogle Scholar
  189. Scholl TO, Johnson WG (2000) Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr 71:1295–1303.  https://doi.org/10.1093/ajcn/71.5.1295s Google Scholar
  190. Schornagel JH, Verweij J, de Mulder PHM, Cognetti F, Vermorken JB, Cappelaere P, Armand JP, Wildiers J, de Graeff A, Clavel M, Sahmoud T, Kirkpatrick A, Lefebvre JL (1995) Randomized phase III trial of edatrexate versus methotrexate in patients with metastatic and/or recurrent squamous cell carcinoma of the head and neck: a European Organization for Research and Treatment of Cancer Head and Neck Cancer Cooperative Group Study. J Clin Oncol 13:1649–1655.  https://doi.org/10.1200/JCO.1995.13.7.1649 PubMedGoogle Scholar
  191. Schultz RM, Patel VF, Worzalla JF, Shih C (1999) Role of thymidylate synthase in the antitumor activity of the multitargeted antifolate, LY231514. Anticancer Res 19(1A):437–443PubMedGoogle Scholar
  192. Schwaninger M, Ringleb P, Winter R, Kohl B, Fiehn W, Rieser PA, Walter-Sack I (1999) Elevated plasma concentrations of homocysteine and antiepileptic drug treatment. Epilepsia 40(3):345–350.  https://doi.org/10.1111/j.1528-1157.1999.tb00716.x PubMedGoogle Scholar
  193. Scott JM (1999) Folate and vitamin B12. Proc Nutr Soc 58(2):441–448PubMedGoogle Scholar
  194. Seeger DR, Cosulich DB, Smith JR Jr, Hultquist ME (1949) Analogs of pteroylglutamic acid. III. 4-amino derivaties. J Am Chem Soc 71:1753.  https://doi.org/10.1021/ja01173a061 Google Scholar
  195. Seidahmed MZ, Abdelbasit OB, Shaheed MM, Alhussein KA, Miqdad AM, Khalil MI, Al-Enazy NM, Salih MA (2014) Epidemiology of neural tube defects. Saudi Med J 35(1):S29–S35PubMedPubMedCentralGoogle Scholar
  196. Selhub J, Dhar GJ, Rosenberg IH (1978) Inhibition of folate enzymes by sulfasalazine. J Clin Investig 61(1):221–224.  https://doi.org/10.1172/JCI108921 PubMedGoogle Scholar
  197. Sen Gupta D, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.), a rich source of folates. J Agric Food Chem 61(32):7794–7799.  https://doi.org/10.1021/jf401891p PubMedGoogle Scholar
  198. Sener U, Zorlu Y, Karaguzel O, Ozdamar O, Coker I, Topbas M (2006) Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure 15(2):79–85.  https://doi.org/10.1016/j.seizure.2005.11.002 PubMedGoogle Scholar
  199. Seremak-Mrozikiewicz A (2013) Metafolin—alternativefor folate deficiency supplementation in pregnant women. Ginekol Pol 84(7):641–646PubMedGoogle Scholar
  200. Seshardi S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D´Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483.  https://doi.org/10.1056/NEJMoa011613 Google Scholar
  201. Shane B (2011) Folate status assessment history: implications for measurement of biomarkers in NHANES. Am J Clin Nutr 94(1):337S–342S.  https://doi.org/10.3945/ajcn.111.013367 PubMedPubMedCentralGoogle Scholar
  202. Sharma TK, Vardey SK, Sitaraman S (2015) Evaluate the effect of valproate monotherapy on the serum homocysteine, folate and vitamin B12 levels in epileptic children. Clin Lab 61(8):933–940.  https://doi.org/10.7754/Clin.Lab.2015.141230 PubMedGoogle Scholar
  203. Sharma TK, Vardey SK, Sitaraman S (2016) Serum homocysteine, folate, and vitamin B12 levels in carbamazepine treated epileptic children. Clin Lab 62(7):1217–1224.  https://doi.org/10.7754/Clin.Lab.2015.150911 PubMedGoogle Scholar
  204. Sharp L, Little J (2004) Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 159:423–443PubMedGoogle Scholar
  205. Shere M, Bapat P, Nickel C, Kapur B, Koren G (2015a) The effectiveness of folate-fortified oral contraceptives in maintaining optimal folate levels to protect against neural tube defects: a systematic review. J Obstet Gynaecol Can 37(6):527–533.  https://doi.org/10.1016/S1701-2163(15)30229-2 PubMedGoogle Scholar
  206. Shere M, Bapat P, Nickel C, Kapur B, Koren G (2015b) Association between use of oral contraceptives and folate status: a systematic review and meta-analysis. J Obstet Gynaecol Can 37(5):430–438.  https://doi.org/10.1016/S1701-2163(15)30258-9 PubMedGoogle Scholar
  207. Shojania AM, Wylie B (1979) The effect of oral contraceptives on vitamin B12 metabolism. Am J Obstet Gynecol 135(1):129–134PubMedGoogle Scholar
  208. Smith AD (2007) Folic acid fortification: the good, the bad, and the puzzle of vitamin B-12. Am J Clin Nutr 85(1):3–5.  https://doi.org/10.1093/ajcn/85.1.3 PubMedGoogle Scholar
  209. Smulders YM, de Man AM, Stehouwer CD, Slaats EH (1998) Trimethoprim and fasting plasma homocysteine. Lancet 352(9143):1827–1828.  https://doi.org/10.1016/S0140-6736(05)79890-1 PubMedGoogle Scholar
  210. Stanhewicz AE, Kenney WL (2017) Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev 75(1):61–70.  https://doi.org/10.1093/nutrit/nuw053 PubMedGoogle Scholar
  211. Stargrove MB, Treasure J, McKee D (2008) Herb, nutrient, and drug interactions: clinical implications and therapeutic strategies. Mosby Elsevier, St. Louis, pp 198–217Google Scholar
  212. Steegers-Theunissen RP, Van Rossum JM, Steegers EA, Thomas CM, Eskes TK (1993) Sub-50 oral contraceptives affect folate kinetics. Gynecol Obstet Investig 36(4):230–233.  https://doi.org/10.1159/000292635 Google Scholar
  213. Stopa EG, O’Brien Katz M (1979) Effect of colchicine on guinea pig intrinsic factor-vitamin B12 receptor. Gastroenterology 76:309–314PubMedGoogle Scholar
  214. Stüchler D, Holzer B (1980) Low serum folate among persons taking Fansidar (pyrimethamine plus sulfadoxine) for prophylaxis of malaria. Acta Trop 37:243–248Google Scholar
  215. Sütterlin MW, Bussen SS, Rieger L, Dietl J, Steck T (2003) Serum folate and vitamin B12 levels in women using modern oral contraceptives containing 20 mg ethinyl estradiol. Eur J Obstet Gynecol Reprod Biol 107:57–61.  https://doi.org/10.1016/S0301-2115(02)00371-8 PubMedGoogle Scholar
  216. Takimoto CH (1996) New antifolates: pharmacology and clinical applications. Oncologist 1:68–81PubMedGoogle Scholar
  217. Tamura T, Aiso K, Johnston KE, Black L, Faught E (2000) Homocysteine, folate, vitamin B-12 and vitamin B-6 in patients receiving antiepileptic drug monotherapy. Epilepsy Res 40(1):7–15.  https://doi.org/10.1016/S0920-1211(00)00101-7 PubMedGoogle Scholar
  218. Taylor IW, Slowiaczek P, Friedlander ML, Tattersall MH (1985) Selective toxicity of a new lipophilic antifolate, BW301U, for methotrexate-resistant cells with reduced drug uptake. Cancer Res 45(3):978–982PubMedGoogle Scholar
  219. Taylor TN, Farkouh RA, Graham JB, Colligs A, Lindermann M, Lynen R, Candrilli SD (2011) Potential reduction in neural tube defects associated with use of metafolin-fortified oral contraceptives in the United States. Am J Obstet Gynecol 205(5):460.e1–460.e8.  https://doi.org/10.1016/j.ajog.2011.06.048 Google Scholar
  220. Theti DS, Jackman AL (2004) The role of alpha-folate receptor-mediated transport in the antitumor activity of antifolate drugs. Clin Cancer Res 10(3):1080–1089.  https://doi.org/10.1158/1078-0432.CCR-03-0157 PubMedGoogle Scholar
  221. Triedman JK, Newburger JW (2016) Trends in congenital heart disease: the next decade. Circulation 133(25):2716–2733.  https://doi.org/10.1161/CIRCULATIONAHA.116.023544 PubMedGoogle Scholar
  222. Tsunematsu K, Kudo G, Shimoda M, Kokue E, Hayama T (1990) Effects of pyrimethamine and folic acid on plasma level of 5-methyltetrahydrofolic acid in rats. Congenit Anom 30(2):113–120.  https://doi.org/10.1111/j.1741-4520.1990.tb00501.x Google Scholar
  223. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, Ariail KS, Keener CL, Li S, Liu H, Farin FM, Potter JD (2001) Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 98(1):231–234PubMedGoogle Scholar
  224. Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG, Kim RB (2010) The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am J Physiol Gastrointest Liver Physiol 298(2):G248–G254.  https://doi.org/10.1152/ajpgi.00224.2009 PubMedGoogle Scholar
  225. Van Cutsem E, Cunningham D, Maroun J, Cervantes A, Glimelius B (2002) Raltitrexed: current clinical status and future directions. Ann Oncol 13:513–522.  https://doi.org/10.1093/annonc/mdf054 PubMedGoogle Scholar
  226. Van Gelder MM, van Rooij IA, Miller RK, Zielhuis GA, de Jong-van den Berg LT, Roeleveld N (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16(4):378–394.  https://doi.org/10.1093/humupd/dmp052 PubMedGoogle Scholar
  227. van der Wilt CL, Smid K, Peters GJ (2002) Effects of antifolates on the binding of 5-fluoro-2′-deoxyuridine monophosphate to thymidylate synthase. Biochem Pharmacol 64(4):669–675.  https://doi.org/10.1016/S0006-2952(02)01219-4 PubMedGoogle Scholar
  228. Verrotti A, Pascarella R, Trotta D, Giuva T, Morgese G, Chiarelli F (2000) Hyperhomocysteinemia in children treated with sodium valproate and carbamazepine. Epilepsy Res 41(3):253–257.  https://doi.org/10.1016/S0920-1211(00)00150-9 PubMedGoogle Scholar
  229. Vidmar M, Grželj J, Geršak K, Mlinarič-Raščan I (2016) Spremenjena aktivnost encima 5,10-metilentetrahidrofolat reduktaza (MTHFR) kot dejavnik tveganja za številne bolezni. Zdravniški Vestnik 85(5/6):324–336Google Scholar
  230. Vilaseca MA, Monros E, Arthuch R, Colomé C, Farré C, Valls C, Cardo E, Pineda M (2000) Anti-epileptic drug treatment in children: hyperhomocysteinemia. B-vitamins and the 677C → T mutation of the methylenetetrahydrofolate reductase gene. Eur J Paediatr Neurol 4:269–277.  https://doi.org/10.1053/ejpn.2000.0379 PubMedGoogle Scholar
  231. Vurucu S, Gulgun M, Yesilkaya E, Unay B, Akin R (2009) The effects of oxcarbazepine treatment on vitamin B12 and folate levels, thyroid functions, sex hormones, and bone mineral density in epileptic patients. Cent Eur J Med 4(3):310–314.  https://doi.org/10.2478/s11536-009-0040-7 Google Scholar
  232. Wang H-X, Wahlin A, Basun H, Fastborn J, Winblad B, Frattelioni L (2001) Vitamin B12 and folate in relation to the development of Alzheimer’s disease. Neurology 56:1188–1194PubMedGoogle Scholar
  233. Wang ES, O´Connor O, She Y, Zelenetz AD, Sirotnak FM, Moore MA (2003) Activity of a novel anti-folate (PDX, 10-propargyl 10-deazaaminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. Leuk Lymphoma 44(6):1027–1035.  https://doi.org/10.1080/1042819031000077124 PubMedGoogle Scholar
  234. Wang M, Li K, Zhao D, Li L (2017) The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: a meta analysis. Mol Autism 8:51.  https://doi.org/10.1186/s13229-017-0170-8 PubMedPubMedCentralGoogle Scholar
  235. Webb DI, Chodos RB, Mahar CQ, Faloon WW (1968) Mechanism of vitamin B12 malabsorption in patients receivinig colchicine. N Engl J Med 279(16):845–850.  https://doi.org/10.1056/NEJM196810172791602 PubMedGoogle Scholar
  236. Wegner C, Nau H (1992) Alteration of embryonic folate metabolism by valproic acid during organogenesis: implications for mechanism of teratogenesis. Neurology 42(5):17–24PubMedGoogle Scholar
  237. Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Smith T, Marson AG (2016) Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. Cochrane Database Syst Rev CD010224.  https://doi.org/10.1002/14651858.CD010224.pub2 Google Scholar
  238. Wilson SM, Bivins BN, Russell KA, Bailey LB (2011) Oral contraceptive use: impact on folate, vitamin B6, and vitamin B12 status. Nutr Rev 69(10):572–583.  https://doi.org/10.1111/j.1753-4887.2011.00419.x PubMedGoogle Scholar
  239. World Health Organization (WHO) (2018) Epilepsy. http://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed 18 June 2018
  240. Worthington P, Schechter L (2010) Drug–nutrient interactions involving folate. In: Boullata JI, Armenti VT (eds) Handbook of drug–nutrient interactions, 2nd edn. Humana Press, New York, pp 513–537Google Scholar
  241. Yilmaz R, Ozer S, Ozyurt H, Erkorkmaz U (2011) Serum vitamin B12 status in children with familial mediterranean fever receiving colchicine treatment. HK J Paediatr 16:3–8Google Scholar
  242. Zimmerman J, Selhub J, Rosenberg IH (1986) Competitive inhibition of folic acid absorption in rat jejunum by triamterene. J Lab Clin Med 108(4):272–276PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Vidmar
    • 1
    • 2
  • J. Grželj
    • 2
    • 3
  • I. Mlinarič-Raščan
    • 2
  • K. Geršak
    • 1
  • M. Sollner Dolenc
    • 2
  1. 1.Research Unit, Department of Obstetrics and GynecologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.University of Ljubljana, Faculty of PharmacyLjubljanaSlovenia
  3. 3.Krka, d.d., Novo mestoNovo mestoSlovenia

Personalised recommendations