Archives of Toxicology

, Volume 93, Issue 2, pp 417–434 | Cite as

Calyx junction dismantlement and synaptic uncoupling precede hair cell extrusion in the vestibular sensory epithelium during sub-chronic 3,3′-iminodipropionitrile ototoxicity in the mouse

  • Erin A. Greguske
  • Maria Carreres-Pons
  • Blanca Cutillas
  • Pere Boadas-Vaello
  • Jordi LlorensEmail author
Organ Toxicity and Mechanisms


The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3′-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity.


Ototoxicity Vestibular system Afferent terminals Calyceal junctions Ribbon synapses 3,3′-Iminodipropionitrile 



This study was supported by grants BFU2015-66109-R (MINECO/FEDER, EU), and 2017 SGR 621 (Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya), and a Minor Research Grant from the Ménière’s Society, UK. E.A.G. was supported by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (FI-DGR 2015 Program) and by the Ministerio de Educación, Cultura y Deporte de España (FPU 2015). The electron and confocal microscopy studies were performed at the Scientific and Technological Centers of the University of Barcelona (CCiT-UB). We thank Dr. Benjamı́n Torrejon-Escribano, Josep M. Rebled, Rosa Rivera and Adriana Martínez Gené for technical assistance and Natacha F. Kolar for animal care. We also thank Dr. Judit Homs and the students Meritxell Deulofeu, Sílvia Prades, Marc Bosch-Mola, Bertrán Álvarez-Pérez, Aina Espinosa, Judith Lloret, Júlia Valor, and Maria Capdevila for their contributions to the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2018_2339_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 KB)
204_2018_2339_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 KB)
204_2018_2339_MOESM3_ESM.jpg (1.4 mb)
Supplementary material 3 (JPG 1455 KB)
204_2018_2339_MOESM4_ESM.jpg (5.2 mb)
Supplementary material 4 (JPG 5311 KB)


  1. Balbuena E, Llorens J (2001) Behavioural disturbances and sensory pathology following allylnitrile exposure in rats. Brain Res 904:298–306CrossRefGoogle Scholar
  2. Balbuena E, Llorens J (2003) Comparison of cis- and trans-crotononitrile effects in the rat reveals specificity in the neurotoxic properties of nitrile isomers. Toxicol Appl Pharmacol 187:89–100CrossRefGoogle Scholar
  3. Black FO, Gianna-Poulin C, Pesznecker SC (2001) Recovery from vestibular ototoxicity. Otol Neurotol 22:662–671CrossRefGoogle Scholar
  4. Black FO, Pesznecker S, Stallings V (2004) Permanent gentamicin vestibulotoxicity. Otol Neurotol 25:559–569CrossRefGoogle Scholar
  5. Boadas-Vaello P, Riera J, Llorens J (2005) Behavioral and pathological effects in the rat define two groups of neurotoxic nitriles. Toxicol Sci 88:456–466CrossRefGoogle Scholar
  6. Boadas-Vaello P, Jover E, Díez-Padrisa N, Bayona JM, Llorens J (2007) Differential role of CYP2E1-mediated metabolism in the lethal and vestibulotoxic effects of cis-crotononitrile in the mouse. Toxicol Appl Pharmacol 225:310–317CrossRefGoogle Scholar
  7. Boadas-Vaello P, Jover E, Saldaña-Ruíz S, Soler-Martín C, Chabbert C, Bayona JM, Llorens J (2009) Allylnitrile metabolism by CYP2E1 and other CYPs leads to distinct lethal and vestibulotoxic effects in the mouse. Toxicol Sci 107:461–472CrossRefGoogle Scholar
  8. Boadas-Vaello P, Sedó-Cabezón L, Verdú E, Llorens J (2017) Strain and sex differences in the vestibular and systemic toxicity of 3,3′-iminodipropionitrile in mice. Toxicol Sci 156:109–122Google Scholar
  9. Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, Hall MD, Amable L, Cunningham LL (2017) Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 8:1654CrossRefGoogle Scholar
  10. Callejo A, Durochat A, Bressieux S, Saleur A, Chabbert C, Domènech Juan I, Llorens J, Gaboyard-Niay S (2017) Dose-dependent cochlear and vestibular toxicity of trans-tympanic cisplatin in the rat. Neurotoxicology 60:1–9CrossRefGoogle Scholar
  11. Chou SM, Hartmann HA (1964) Axonal lesions and waltzing syndrome after IDPN administration in rats. With a concept—Axostasis. Acta Neuropathol 3:428–450CrossRefGoogle Scholar
  12. Contini D, Zampini V, Tavazzani E, Magistretti J, Russo G, Prigioni I, Masetto S (2012) Intercellular K+ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 227:232–246CrossRefGoogle Scholar
  13. Contini D, Price SD, Art JJ (2017) Accumulation of K + in the synaptic cleft modulates activity by influencing both vestibular hair cell and calyx afferent in the turtle. J Physiol 595:777–803CrossRefGoogle Scholar
  14. Corwin JT, Jones JE, Katayama A, Kelley MW, Warchol ME (1991) Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues. Ciba Found Symp 160:103–120Google Scholar
  15. Cotanche DA (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res 30:181–195CrossRefGoogle Scholar
  16. Crofton KM, Janssen R, Prazma J, Pulver S, Barone S Jr (1994) The ototoxicity of 3,3′-iminodipropionitrile: Functional and morphological evidence of cochlear damage. Hear Res 80:129–140CrossRefGoogle Scholar
  17. Curthoys IS, Vulovic V, Burgess AM, Manzari L, Sokolic L, Pogson J, Robins M, Mezey LE, Goonetilleke S, Cornell ED, MacDougall HG (2014) Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration. Clin Exp Pharmacol Physiol 41:371–380CrossRefGoogle Scholar
  18. Dechesne C, Mbiene JP, Sans A (1986) Postnatal development of vestibular receptor surfaces in the rat. Acta Otolaryngol 101:11–18CrossRefGoogle Scholar
  19. Desai SS, Ali H, Lysakowski A (2005) Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. J Neurophysiol 93:267–280CrossRefGoogle Scholar
  20. Gaboyard-Niay S, Travo C, Saleur A, Broussy A, Brugeaud A, Chabbert C (2016) Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms. Dis Model Mech 9:1181–1192CrossRefGoogle Scholar
  21. Gagnaire F, Marignac B, Ban M, Langlais C (2001) The ototoxic effects induced in rats by treatment for 12 weeks with 2-butenenitrile, 3-butenenitrile and cis-2-pentenenitrile. Pharmacol Toxicol 88:126–134CrossRefGoogle Scholar
  22. Golub JS, Tong L, Ngyuen TB, Hume CR, Palmiter RD, Rubel EW, Stone JS (2012) Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 32:15093–15105CrossRefGoogle Scholar
  23. Goodyear RJ, Gale JE, Ranatunga KM, Kros CJ, Richardson GP (2008) Aminoglycoside-induced phosphatidylserine externalization in sensory hair cells is regionally restricted, rapid, and reversible. J Neurosci 28:9939–9952CrossRefGoogle Scholar
  24. Granados O, Meza G (2005) Streptidine, a metabolic derivative produced after administration of streptomycin in vivo, is vestibulotoxic in rats. Histol Histopathol 20:357–364Google Scholar
  25. Griffin JW, Hoffman PN, Clark AW, Carroll PT, Price DL (1978) Slow axonal transport of neurofilament proteins: Impairment by 3,3′-iminodipropionitrile administration. Science 202:633–635CrossRefGoogle Scholar
  26. Highstein SM, Holstein GR, Mann MA, Rabbitt RD (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. Proc Natl Acad Sci USA 111:5421–5426CrossRefGoogle Scholar
  27. Hirvonen TP, Minor LB, Hullar TE, Carey JP (2005) Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol 93:643–655CrossRefGoogle Scholar
  28. Hodgkinson L, Prasher D (2006) Effects of industrial solvents on hearing and balance: a review. Noise Health 8:114–133CrossRefGoogle Scholar
  29. Li L, Nevill G, Forge A (1995) Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. J Comp Neurol 355:405–417CrossRefGoogle Scholar
  30. Li Y, Ding D, Jiang H, Fu Y, Salvi R (2011) Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox Res 20:307–319CrossRefGoogle Scholar
  31. Lim R, Kindig AE, Donne SW, Callister RJ, Brichta AM (2011) Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Exp Brain Res 210:607–621CrossRefGoogle Scholar
  32. Llorens J (2013) Toxic neurofilamentous axonopathies—accumulation of neurofilaments and axonal degeneration. J Intern Med 273:478–489CrossRefGoogle Scholar
  33. Llorens J, Crofton KM (1991) Enhanced neurotoxicity of 3,3′-iminodipropionitrile following carbon tetrachloride pretreatment in the rat. Neurotoxicology 12:583–594Google Scholar
  34. Llorens J, Rodríguez-Farré E (1997) Comparison of behavioral, vestibular, and axonal effects of subchronic IDPN in the rat. Neurotoxicol Teratol 19:117–127CrossRefGoogle Scholar
  35. Llorens J, Demêmes D, Sans A (1993) The behavioral syndrome caused by 3,3′-iminodipropionitrile and related nitriles in the rat is associated with degeneration of the vestibular sensory hair cells. Toxicol Appl Pharmacol 123:199–210CrossRefGoogle Scholar
  36. Llorens J, Aguiló A, Rodríguez-Farré E (1998) Behavioral disturbances and vestibular pathology following crotonitrile exposure in rats. J Periph Nerv Sys 3:189–196Google Scholar
  37. Llorens J, Callejo A, Greguske EA, Maroto AF, Cutillas B, Martins-Lopes V (2018) Physiological assessment of vestibular function and toxicity in humans and animals. Neurotoxicology 66:204–212CrossRefGoogle Scholar
  38. Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443CrossRefGoogle Scholar
  39. Lysakowski A, Gaboyard-Niay S, Calin-Jageman I, Chatlani S, Price SD, Eatock RA (2011) Molecular microdomains in a sensory terminal, the vestibular calyx ending. J Neurosci 31:10101–10114CrossRefGoogle Scholar
  40. McCall AA, Yates BJ (2011) Compensation following bilateral vestibular damage. Front Neurol 2:88CrossRefGoogle Scholar
  41. Murillo-Cuesta S, Contreras J, Cediel R, Varela-Nieto I (2010) Comparison of different aminoglycoside antibiotic treatments to refine ototoxicity studies in adult mice. Lab Anim 44:124–131CrossRefGoogle Scholar
  42. Nace CG, Genter MB, Sayre LM, Crofton KM (1997) Effect of methimazole, an FMO substrate and competitive inhibitor, on the neurotoxicity of 3,3′-iminodipropionitrile in male rats. Fundam Appl Toxicol 37:131–140CrossRefGoogle Scholar
  43. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89CrossRefGoogle Scholar
  44. Op de Beeck K, Schacht J, Van Camp G (2011) Apoptosis in acquired and genetic hearing impairment: the programmed death of the hair cell. Hear Res 281:18–27CrossRefGoogle Scholar
  45. Paken J, Govender CD, Pillay M, Sewram V (2016) Cisplatin-associated ototoxicity: a review for the health professional. J Toxicol. Google Scholar
  46. Rúa F, Buffard M, Sedó-Cabezón L, Hernández-Mir G, de la Torre A, Saldaña-Ruíz S, Chabbert C, Bayona JM, Messeguer A, Llorens J (2013) Vestibulotoxic properties of potential metabolites of allylnitrile. Toxicol Sci 135:182–192CrossRefGoogle Scholar
  47. Ruan Q, Ao H, He J, Chen Z, Yu Z, Zhang R, Wang J, Yin S (2014) Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology 40:86–96CrossRefGoogle Scholar
  48. Rubel EW, Furrer SA, Stone JS (2013) A brief history of hair cell regeneration research and speculations on the future. Hear Res 297:42–51CrossRefGoogle Scholar
  49. Sadeghi SG, Pyott SJ, Yu Z, Glowatzki E (2014) Glutamatergic signaling at the vestibular hair cell calyx synapse. J Neurosci 34:14536–14550CrossRefGoogle Scholar
  50. Saldaña-Ruíz S, Hernández-Mir G, Sedó-Cabezón L, Cutillas B, Llorens J (2012a) Vestibular toxicity of cis-2-pentenenitrile in the rat. Toxicol Lett 211:281–288CrossRefGoogle Scholar
  51. Saldaña-Ruíz S, Soler-Martín C, Llorens J (2012b) Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse. Toxicol Lett 208:125–132CrossRefGoogle Scholar
  52. Saldaña-Ruíz S, Boadas-Vaello P, Sedó-Cabezón L, Llorens J (2013) Reduced systemic toxicity and preserved vestibular toxicity following co-treatment with nitriles and CYP2E1 inhibitors: a mouse model for hair cell loss. J Assoc Res Otolaryngol 14:661–671CrossRefGoogle Scholar
  53. Schacht J, Talaska AE, Rybak LP (2012) Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec 295:1837–1850CrossRefGoogle Scholar
  54. Schuth O, McLean WJ, Eatock RA, Pyott SJ (2014) Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia. J Assoc Res Otolaryngol 15:739–754CrossRefGoogle Scholar
  55. Sedó-Cabezón L, Boadas-Vaello P, Soler-Martín C, Llorens J (2014) Vestibular damage in chronic ototoxicity: a mini-review. Neurotoxicology 43:21–27CrossRefGoogle Scholar
  56. Sedó-Cabezón L, Jedynak P, Boadas-Vaello P, Llorens J (2015) Transient alteration of the vestibular calyceal junction and synapse in response to chronic ototoxic insult in rats. Dis Model Mech 8:1323–1337CrossRefGoogle Scholar
  57. Seoane A, Demêmes D, Llorens J (2001a) Pathology of the rat vestibular sensory epithelia during subchronic 3,3′-iminodipropionitrile exposure: hair cells may not be the primary target of toxicity. Acta Neuropathol 102:339–348Google Scholar
  58. Seoane A, Demêmes D, Llorens J (2001b) Relationship between insult intensity and mode of hair cell loss in the vestibular system of rats exposed to 3,3′-iminodipropionitrile. J Comp Neurol 439:385–399CrossRefGoogle Scholar
  59. Shi X, Gillespie PG, Nuttall AL (2005) Na + influx triggers bleb formation on inner hair cells. Am J Physiol Cell Physiol 288:C1332–C1341CrossRefGoogle Scholar
  60. Soler-Martín C, Diez-Padrisa N, Boadas-Vaello P, Llorens J (2007) Behavioral disturbances and hair cell loss in the inner ear following nitrile exposure in mice, guinea pigs, and frogs. Toxicol Sci 96:123–132CrossRefGoogle Scholar
  61. Soler-Martín C, Boadas-Vaello P, Saldaña-Ruíz S, Cutillas B, Llorens J (2011) Butenenitriles have low axonopathic potencial in the rat. Toxicol Lett 200:187–193CrossRefGoogle Scholar
  62. Sousa AD, Andrade LR, Salles FT, Pillai AM, Buttermore ED, Bhat MA, Kachar B (2009) The septate junction protein caspr is required for structural support and retention of KCNQ4 at calyceal synapses of vestibular hair cells. J Neurosci 29:3103–3108CrossRefGoogle Scholar
  63. Sultemeier DR, Hoffman LF (2017) Partial aminoglycoside lesions in vestibular epithelia reveal broad sensory dysfunction associated with modest hair cell loss and afferent calyx retraction. Front Cell Neurosci 11:331CrossRefGoogle Scholar
  64. Swartz DJ, Santi PA (1999) Immunolocalization of tenascin in the chinchilla inner ear. Hear Res 130:108–114CrossRefGoogle Scholar
  65. Tanii H, Takayasu T, Higashi T, Leng S, Saijoh K (2004) Allylnitrile: generation from cruciferous vegetables and behavioral effects on mice of repeated exposure. Food Chem Toxicol 42:453–458CrossRefGoogle Scholar
  66. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9:44–64CrossRefGoogle Scholar
  67. Taylor RR, Jagger DJ, Saeed SR, Axon P, Donnelly N, Tysome J, Moffatt D, Irving R, Monksfield P, Coulson C, Freeman SR, Lloyd SK, Forge A (2015) Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiol Aging 36:2068–2084CrossRefGoogle Scholar
  68. Warchol ME, Speck JD (2007) Expression of GATA3 and tenascin in the avian vestibular maculae: normative patterns and changes during sensory regeneration. J Comp Neurol 500:646–657CrossRefGoogle Scholar
  69. Wersäll J, Björkroth B, Flock A, Lundquist PG (1973) Experiments on ototoxic effects of antibiotics. Adv Otorhinolaryngol 20:14–41Google Scholar
  70. Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158:165–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Ciències Fisiològiques, Institut de NeurocièncesUniversitat de BarcelonaL’Hospitalet de LlobregatSpain
  2. 2.Institut d’Investigació Biomèdica de Bellvitge, IDIBELLL’Hospitalet de LlobregatSpain
  3. 3.Departament d’Infermeria Fonamental i MedicoquirúrgicaInstitut de Neurociències, Universitat de BarcelonaL’Hospitalet de LlobregatSpain
  4. 4.Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Departament de Ciències Mèdiques, Facultat de MedicinaUniversitat de GironaGironaSpain

Personalised recommendations