Advertisement

Archives of Toxicology

, Volume 92, Issue 7, pp 2217–2225 | Cite as

FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China

  • Yanmei Yang
  • Qiaoshi Zhao
  • Yang Liu
  • Xiaona Liu
  • Yanru Chu
  • Huazhu Yan
  • Yumei Fan
  • Simeng Huo
  • Limei Wang
  • Qun Lou
  • Ning Guo
  • Dianjun Sun
  • Yanhui GaoEmail author
Toxicogenomics

Abstract

Skeletal fluorosis is a metabolic bone and joint disease caused by excessive accumulation of fluoride in the bones. Compared with Kazakhs, Tibetans are more likely to develop moderate and severe brick tea type skeletal fluorosis, although they have similar fluoride exposure. Single nucleotide polymorphisms (SNPs) in frizzled-related protein (FRZB) have been associated with osteoarthritis, but their association with the risk of skeletal fluorosis has not been reported. In this paper, we investigated the association of three SNPs (rs7775, rs2242070 and rs9288087) in FRZB1with brick tea type skeletal fluorosis risk in a cross-sectional case–control study conducted in Sinkiang and Qinghai, China. A total of 598 individuals, including 308 Tibetans and 290 Kazakhs, were enrolled in this study, in which cases and controls were 221 and 377, respectively. The skeletal fluorosis was diagnosed according to the Chinese diagnostic criteria of endemic skeletal fluorosis (WS192-2008). The fluoride content in tea water or urine was detected using the fluoride ion electrode. SNPs were assessed using the Sequenom MassARRAY system. Binary logistic regressions found evidence of association with rs2242070 AA genotype in only Kazakh participants [odds ratio (OR) 0.417, 95% CI 0.216–0.807, p = 0.009], but not in Tibetans. When stratified by age, this protective effect of AA genotype in rs2242070 was pronounced in Kazakh participants aged 46–65 (OR 0.321, 95% CI 0.135–0.764, p = 0.010). This protective association with AA genotype in rs2242070 in Kazakhs also appeared to be stronger with tea fluoride intake > 3.5 mg/day (OR 0.396, 95% CI 0.182–0.864, p = 0.020). Our data suggest there might be differential genetic influence on skeletal fluorosis risk in Kazakh and Tibetan participants and that this difference might be modified by tea fluoride intake.

Keywords

Brick tea type fluorosis Skeletal fluorosis Single nucleotide polymorphism FRZB1 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81673110 and 81172605) and the Natural science foundation of Heilongjiang Province for outstanding youth (JC2015018). The authors thank all participates in this study and numerous members of the Center for Endemic Disease Control of Chinese Center for Disease Control and Prevention, Qinghai institute for Endemic Disease Control and Sinkiang institute for Endemic Disease Control.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Supplementary material

204_2018_2217_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. Agundez JA, Garcia-Martin E, Martinez C et al (2016) Heme oxygenase-1 and 2 common genetic variants and risk for multiple sclerosis. Sci Rep 6:20830.  https://doi.org/10.1038/srep20830 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ba Y, Huang H, Yang Y et al (2009) The association between osteocalcin gene polymorphism and dental fluorosis among children exposed to fluoride in People’s Republic of China. Ecotoxicol Environ Saf 72(8):2158–2161.  https://doi.org/10.1016/j.ecoenv.2009.08.014 CrossRefPubMedGoogle Scholar
  3. Ba Y, Zhang H, Wang G et al (2011) Association of dental fluorosis with polymorphisms of estrogen receptor gene in Chinese children. Biol Trace Elem Res 143(1):87–96.  https://doi.org/10.1007/s12011-010-8848-1 CrossRefPubMedGoogle Scholar
  4. Cao J, Zhao Y, Liu J et al (2003) Brick tea fluoride as a main source of adult fluorosis. Food Chem Toxicol 41(4):535–542CrossRefPubMedGoogle Scholar
  5. Choubisa SL, Choubisa L, Sompura K, Choubisa D (2007) Fluorosis in subjects belonging to different ethnic groups of Rajasthan, India. J Commun Dis 39(3):171–177PubMedGoogle Scholar
  6. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20(3):350–355.  https://doi.org/10.4103/0970-9290.57379 CrossRefPubMedGoogle Scholar
  7. Enomoto-Iwamoto M, Kitagaki J, Koyama E et al (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251(1):142–156CrossRefPubMedGoogle Scholar
  8. Evangelou E, Chapman K, Meulenbelt I et al (2009) Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum 60(6):1710–1721.  https://doi.org/10.1002/art.24524 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Everett ET, Yan D, Weaver M, Liu L, Foroud T, Martinez-Mier EA (2009) Detection of dental fluorosis-associated quantitative trait loci on mouse chromosomes 2 and 11. Cells Tissues Organs 189(1–4):212–218  https://doi.org/10.1159/000151383 CrossRefPubMedGoogle Scholar
  10. Everett ET, Yin Z, Yan D, Zou F (2011) Fine mapping of dental fluorosis quantitative trait loci in mice. Eur J Oral Sci 119 Suppl 1:8–12.  https://doi.org/10.1111/j.1600-0722.2011.00868.x CrossRefPubMedGoogle Scholar
  11. Fung KF, Zhang ZQ, Wong JWC et al (1999) Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut 104(2):197–205.  https://doi.org/10.1016/S0269-7491(98)00187-0 CrossRefGoogle Scholar
  12. Gao G, Zhang ZL, He JW et al (2010) No association of the polymorphisms of the frizzled-related protein gene with peak bone mineral density in Chinese nuclear families. BMC Med Genet 11:1.  https://doi.org/10.1186/1471-2350-11-1 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hoang B, Moos M Jr, Vukicevic S, Luyten FP (1996) Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 271(42):26131–26137CrossRefPubMedGoogle Scholar
  14. Huang H, Ba Y, Cui L et al (2008) COL1A2 gene polymorphisms (Pvu II and Rsa I), serum calciotropic hormone levels, and dental fluorosis. Commun Dent Oral Epidemiol 36(6):517–522.  https://doi.org/10.1111/j.1600-0528.2007.00424.x CrossRefGoogle Scholar
  15. Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142.  https://doi.org/10.1007/978-1-4419-8011-3_4 PubMedCrossRefGoogle Scholar
  16. Jin C, Yan Z, Jian-Wei L et al (2003) Prevention and control of brick-tea type fluorosis: a 3-year observation in Dangxiong, Tibet. Ecotoxicol Environ Saf 56(2):222–227CrossRefPubMedGoogle Scholar
  17. Judex S, Donahue LR, Rubin C (2002) Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16(10):1280–1282.  https://doi.org/10.1096/fj.01-0913fje CrossRefPubMedGoogle Scholar
  18. Kakumanu N, Rao SD (2013) Images in clinical medicine. Skeletal fluorosis due to excessive tea drinking. N Engl J Med 368(12):1140.  https://doi.org/10.1056/NEJMicm1200995 CrossRefPubMedGoogle Scholar
  19. Kobayashi CA, Leite AL, Peres-Buzalaf C et al (2014) Bone response to fluoride exposure is influenced by genetics. PLoS One 9(12):e114343.  https://doi.org/10.1371/journal.pone.0114343 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Krishnamachari KA (1986) Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease. Progr Food Nutr Sci 10(3–4):279–314Google Scholar
  21. Kumar JV, Swango PA, Lininger LL, Leske GS, Green EL, Haley VB (1998) Changes in dental fluorosis and dental caries in Newburgh and Kingston, New York. Am J Public Health 88(12):1866–1870CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lane NE, Lian K, Nevitt MC et al (2006) Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum 54(4):1246–1254.  https://doi.org/10.1002/art.21673 CrossRefPubMedGoogle Scholar
  23. Li BY, Yang YM, Liu Y et al (2017) Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis. PloS One 12(2):e0171011.  https://doi.org/10.1371/journal.pone.0171011 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lodewyckx L, Lories RJ (2009) WNT signaling in osteoarthritis and osteoporosis: what is the biological significance for the clinician? Curr Rheumatol Rep 11(1):23–30CrossRefPubMedGoogle Scholar
  25. Lodewyckx L, Cailotto F, Thysen S, Luyten FP, Lories RJ (2012) Tight regulation of wingless-type signaling in the articular cartilage-subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther 14(1):R16.  https://doi.org/10.1186/ar3695 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lories RJ, Peeters J, Bakker A et al (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56(12):4095–4103.  https://doi.org/10.1002/art.23137 CrossRefPubMedGoogle Scholar
  27. Loughlin J, Dowling B, Chapman K et al (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101(26):9757–9762.  https://doi.org/10.1073/pnas.0403456101 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lu R, Gao X, Chen Y et al (2012) Association of an NFKB1 intron SNP (rs4648068) with gastric cancer patients in the Han Chinese population. BMC Gastroenterol 12:87.  https://doi.org/10.1186/1471-230X-12-87 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lung SC, Cheng HW, Fu CB (2008) Potential exposure and risk of fluoride intakes from tea drinks produced in Taiwan. J Expos Sci Environ Epidemiol 18(2):158–166.  https://doi.org/10.1038/sj.jes.7500574 CrossRefGoogle Scholar
  30. Mabelya L, Hof MV, Konig KG, van Palenstein Helderman WH (1994) Comparison of two indices of dental fluorosis in low, moderate and high fluorosis Tanzanian populations. Commun Dent Oral Epidemiol 22(6):415–420CrossRefGoogle Scholar
  31. Mandinic Z, Curcic M, Antonijevic B, Lekic CP, Carevic M (2009) Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis. Food Chem Toxicol 47(6):1080–1084.  https://doi.org/10.1016/j.fct.2009.01.038 CrossRefPubMedGoogle Scholar
  32. Pan L, Shi X, Liu S et al (2014) Fluoride promotes osteoblastic differentiation through canonical Wnt/beta-catenin signaling pathway. Toxicol Lett 225(1):34–42.  https://doi.org/10.1016/j.toxlet.2013.11.029 CrossRefPubMedGoogle Scholar
  33. Pei J, Li B, Liu Y et al (2017) Matrix metallopeptidase-2 gene rs2287074 polymorphism is associated with brick tea skeletal fluorosis in Tibetans and Kazakhs, China. Sci Rep 7:40086.  https://doi.org/10.1038/srep40086 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ, Gonzalez A (2007) Further evidence of the role of frizzled-related protein gene polymorphisms in osteoarthritis. Ann Rheum Dis 66(8):1052–1055.  https://doi.org/10.1136/ard.2006.065938 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sjakste T, Paramonova N, Grislis Z, Trapina I, Kairisa D (2011) Analysis of the single-nucleotide polymorphism in the 5′UTR and part of intron I of the sheep MSTN gene. DNA Cell Biol 30(7):433–444.  https://doi.org/10.1089/dna.2010.1153 CrossRefPubMedGoogle Scholar
  36. Tranah GJ, Taylor BC, Lui LY et al (2008) Genetic variation in candidate osteoporosis genes, bone mineral density, and fracture risk: the study of osteoporotic fractures. Calcif Tissue Int 83(3):155–166.  https://doi.org/10.1007/s00223-008-9165-y CrossRefPubMedPubMedCentralGoogle Scholar
  37. Waarsing JH, Kloppenburg M, Slagboom PE et al (2011) Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis. Arthritis Rheum 63(5):1349–1354.  https://doi.org/10.1002/art.30288 CrossRefPubMedGoogle Scholar
  38. Wagner ER, Zhu G, Zhang BQ et al (2011) The therapeutic potential of the Wnt signaling pathway in bone disorders. Curr Mol Pharmacol 4(1):14–25CrossRefPubMedGoogle Scholar
  39. Wang W, Xu J, Liu K et al (2013) Suppression of sclerostin and dickkopf-1 levels in patients with fluorine bone injury. Environ Toxicol Pharmacol 35(3):402–407.  https://doi.org/10.1016/j.etap.2013.01.005 CrossRefPubMedGoogle Scholar
  40. Wen S, Li A, Cui L et al (2012) The relationship of PTH Bst BI polymorphism, calciotropic hormone levels, and dental fluorosis of children in China. Biol Trace Elem Res 147(1–3):84–90.  https://doi.org/10.1007/s12011-011-9313-5 CrossRefPubMedGoogle Scholar
  41. Wu J, Wang W, Liu Y et al (2015) Modifying role of GSTP1 polymorphism on the association between tea fluoride exposure and the brick-tea type fluorosis. PloS One 10(6):e0128280.  https://doi.org/10.1371/journal.pone.0128280 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yang YM, Yang Y, Dai WW, Li XM, Ma JQ, Tang LP (2016) Genistein-induced apoptosis is mediated by endoplasmic reticulum stress in cervical cancer cells. Eur Rev Med Pharmacol Sci 20(15):3292–3296PubMedGoogle Scholar
  43. Yi JCJ (2008) Tea and fluorosis. J Fluor Chem 129(2):76–81.  https://doi.org/10.1016/j.jfluchem.2007.11.001 CrossRefGoogle Scholar
  44. Yoder KM, Mabelya L, Robison VA, Dunipace AJ, Brizendine EJ, Stookey GK (1998) Severe dental fluorosis in a Tanzanian population consuming water with negligible fluoride concentration. Commun Dent Oral Epidemiol 26(6):382–393CrossRefGoogle Scholar
  45. Zhang T, Shan KR, Tu X, He Y, Pei JJ, Guan ZZ (2013) Myeloperoxidase activity and its corresponding mRNA expression as well as gene polymorphism in the population living in the coal-burning endemic fluorosis area in Guizhou of China. Biol Trace Elem Res 152(3):379–386.  https://doi.org/10.1007/s12011-013-9632- CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanmei Yang
    • 1
    • 2
    • 3
  • Qiaoshi Zhao
    • 1
    • 2
    • 3
  • Yang Liu
    • 1
    • 2
    • 3
  • Xiaona Liu
    • 1
    • 2
    • 3
  • Yanru Chu
    • 1
    • 2
    • 3
  • Huazhu Yan
    • 1
    • 2
    • 3
  • Yumei Fan
    • 1
    • 2
    • 3
  • Simeng Huo
    • 1
    • 2
    • 3
  • Limei Wang
    • 1
    • 2
    • 3
  • Qun Lou
    • 1
    • 2
    • 3
  • Ning Guo
    • 1
    • 2
    • 3
  • Dianjun Sun
    • 1
    • 2
    • 3
  • Yanhui Gao
    • 1
    • 2
    • 3
    Email author
  1. 1.Center for Endemic Disease Control, Chinese Center for Disease Control and PreventionHarbin Medical UniversityHarbinChina
  2. 2.Key Lab of Etiology and EpidemiologyEducation Bureau of Heilongjiang Province and Ministry of Health (23618504)HarbinChina
  3. 3.Heilongjiang Provincial Key Lab of Trace Elements and Human HealthHarbinChina

Personalised recommendations