Advertisement

Archives of Toxicology

, Volume 92, Issue 5, pp 1815–1829 | Cite as

Acute exposure to diesel exhaust impairs adult neurogenesis in mice: prominence in males and protective effect of pioglitazone

  • Jacki L. Coburn
  • Toby B. Cole
  • Khoi T. Dao
  • Lucio G. Costa
Organ Toxicity and Mechanisms

Abstract

Adult neurogenesis is the process by which neural stem cells give rise to new functional neurons in specific regions of the adult brain, a process that occurs throughout life. Significantly, neurodegenerative and psychiatric disorders present suppressed neurogenesis, activated microglia, and neuroinflammation. Traffic-related air pollution has been shown to adversely affect the central nervous system. As the cardinal effects of air pollution exposure are microglial activation, and ensuing oxidative stress and neuroinflammation, we investigated whether acute exposures to diesel exhaust (DE) would inhibit adult neurogenesis in mice. Mice were exposed for 6 h to DE at a PM2.5 concentration of 250–300 μg/m3, followed by assessment of adult neurogenesis in the hippocampal subgranular zone (SGZ), the subventricular zone (SVZ), and olfactory bulb (OB). DE impaired cellular proliferation in the SGZ and SVZ in males, but not females. DE reduced adult neurogenesis, with male mice showing fewer new neurons in the SGZ, SVZ, and OB, and females showing fewer new neurons only in the OB. To assess whether blocking microglial activation protected against DE-induced suppression of adult hippocampal neurogenesis, male mice were pre-treated with pioglitazone (PGZ) prior to DE exposure. The effects of DE exposure on microglia, as well as neuroinflammation and oxidative stress, were reduced by PGZ. PGZ also antagonized DE-induced suppression of neurogenesis in the SGZ. These results suggest that DE exposure impairs adult neurogenesis in a sex-dependent manner, by a mechanism likely to involve microglia activation and neuroinflammation.

Keywords

Diesel exhaust Adult neurogenesis Microglia Pioglitazone Neuroinflammation 

Notes

Acknowledgements

This study was supported in part by grants from the National Institute of Environmental Health Sciences (R01ES22949, R01ES28273, P30ES07033), the National Institute of Child Health and Human Development (U54HD083091), and by funds from the Department of Environmental and Occupational Health Sciences, University of Washington. Thanks are due to Mr. James Stewart, who oversaw diesel exhaust exposures, the members of Dr. Lucio G. Costa’s and Dr. Zhengui Xia’s laboratory for their assistance in troubleshooting and helpful discussions, and Dr. Jennifer Stone and Mr. Glen McDonald at the Center on Human Development and Disability for their help with fluorescence microscopy and immunohistochemistry.

Compliance with ethical standards

Ethical statement

C57BL6/J mice of both sexes were used in these studies. All animal procedures were pre-approved by the University of Washington Institutional Animal Care and Use Committee (IACUC), Protocol 2077-14. Experiments were carried out in accordance with the National Research Council Guide for the Care and Use of Laboratory Animals, as adopted by the National Institutes of Health.

Conflict of interest

The authors declare that they do not have any conflict of interest.

References

  1. Aarum J, Sandberg K, Haeberlein SLB, Persson MAA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci 100:15983–15988CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ailshire JA, Clarke P (2015) Fine particulate matter air pollution and cognitive function among US older adults. J Gerontol B Psychol Sci Soc Sci 70:322–328CrossRefPubMedGoogle Scholar
  3. Allen RW, Gombojav E, Barkhasragchaa B, Byambaa T, Lkhasuren O, Amram O, Takaro TK, Janes CR (2013) An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmosphere Health 6:137–150CrossRefGoogle Scholar
  4. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293CrossRefPubMedGoogle Scholar
  5. Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci 10:191CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baudic S, Barba GD, Thibaudet MC, Smagghe A, Remy P, Traykov L (2006) Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch Clin Neuropsychol 21:15–21CrossRefPubMedGoogle Scholar
  7. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors Chur Switz 22:123–131CrossRefGoogle Scholar
  8. Bischofberger J (2007) Young and excitable: new neurons in memory networks. Nat Neurosci 10:273–275CrossRefPubMedGoogle Scholar
  9. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399CrossRefPubMedGoogle Scholar
  11. Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Panis I, Degraeuwe L, B., and Meeusen R (2011) No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett 500:129–132CrossRefPubMedGoogle Scholar
  12. Bos I, De Boever P, Int Panis L, Sarre S, Meeusen R (2012) Negative effects of ultrafine particle exposure during forced exercise on the expression of brain-derived neurotrophic factor in the hippocampus of rats. Neuroscience 223:131–139CrossRefPubMedGoogle Scholar
  13. Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, Micci M-A (2016) Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep 6:27812CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216CrossRefPubMedGoogle Scholar
  15. Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J et al. (2017) Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiat. 7, e1022CrossRefGoogle Scholar
  16. Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez-Garza G, Barragán-Mejía G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot RR et al (2008) Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn 68:117–127CrossRefPubMedGoogle Scholar
  17. Calderón-Garcidueñas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chávez R, Torres-Jardón R, González-Maciel A, Reynoso-Robles R, Osnaya N, Villarreal-Calderon R et al (2012) Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 28:93–107CrossRefPubMedGoogle Scholar
  18. Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D’angiulli A, Torres-Jardon R (2015) megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. Environ Res 137:157–169CrossRefPubMedGoogle Scholar
  19. Carpentier PA, Palmer TD (2009) Immune influence on adult neural stem cell regulation and function. Neuron 64:79–92CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carta AR, Pisanu A (2013) Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson’s disease? Neurotox Res 23:112–123CrossRefPubMedGoogle Scholar
  21. Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, Donkelaar A van, Hystad P, Martin RV, Murray BJ, Jessiman B et al (2017) Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet 389:718–726CrossRefPubMedGoogle Scholar
  22. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98CrossRefPubMedPubMedCentralGoogle Scholar
  23. Choi JY, Kim JY, Kim JY, Park J, Lee WT, Lee JE (2017) M2 phenotype microglia-derived cytokine stimulates proliferation and neuronal differentiation of endogenous stem cells in ischemic brain. Exp Neurobiol 26:33–41CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cole TB, Coburn JL, Dao K, Roque PJ (2016) Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology 374:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  25. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418CrossRefPubMedPubMedCentralGoogle Scholar
  26. Corona JC, Duchen MR (2016) PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 100:153–163CrossRefPubMedPubMedCentralGoogle Scholar
  27. Costa LG (2017) Traffic-related air pollution and neurodegenerative diseases: epidemiological and experimental evidence. In: Aschner M Costa LG (eds) In: Advances in neurotoxicology, vol 1,. Elsevier, New York, pp 1–47Google Scholar
  28. Costa LG, Cole TB, Coburn J, Chang Y-C, Dao K, Roque P (2014a). Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Res Int. 736385Google Scholar
  29. Costa LG, de Laat R, Dao K, Pellacani C, Cole TB, Furlong CE (2014b) Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology 43:3–9CrossRefPubMedGoogle Scholar
  30. Costa LG, Cole TB, Coburn J, Chang Y-C, Dao K, Roqué PJ (2017) Neurotoxicity of traffic-related air pollution. Neurotoxicology 59:133–139CrossRefPubMedGoogle Scholar
  31. Demars M, Hu Y-S, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88:2103–2117CrossRefPubMedPubMedCentralGoogle Scholar
  32. Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJM (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39:445–454CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci 100:13632–13637CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fox JR, Cox DP, Drury BE, Gould TR, Kavanagh TJ, Paulsen MH, Sheppard L, Simpson CD, Stewart JA, Larson TV et al (2015) Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. Air Qual Atmos Health 8:507–519CrossRefPubMedGoogle Scholar
  35. Frankland PW, Miller FD (2008) Regenerating your senses: multiple roles for neurogenesis in the adult brain. Nat Neurosci 11:1124–1126CrossRefPubMedGoogle Scholar
  36. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: Intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287CrossRefPubMedGoogle Scholar
  37. Genc S, Zadeoglurari Z, Fuss SH, Genc K (2012) The adverse effects of air pollution on the nervous system. J Toxicol 23:ID782472Google Scholar
  38. Ghio AJ, Smith CB, Madden MC (2012) Diesel exhaust particles and airway inflammation. Curr Op Pulm Med 18:144–150CrossRefGoogle Scholar
  39. Ghosh S, Patel N, Rahn D, McAllister J, Sadeghi S, Horwitz G, Berry D, Wang KX, Swerdlow RH (2007) The Thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol Pharmacol 71:1695–1702CrossRefPubMedGoogle Scholar
  40. Giordano G, Cole TB, Furlong CE, Costa LG (2011) Paraoxonase-2 (PON2) in the central nervous system: a neuroprotective role. Toxicol Appl Pharmacol 256:369–378CrossRefPubMedPubMedCentralGoogle Scholar
  41. Giordano G, Tait L, Furlong CE, Cole TB, Kavanagh TJ, Costa LG (2013) Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase 2 (PON2) expression. Free Radic Biol Med 58:98–108CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gould T, Larson T, Stewart J, Kaufman JD, Slater D, McEwen N (2008) A controlled inhalation diesel exhaust exposure facility with dynamic feedback control of PM concentration. Inhal Toxicol 20:49–52CrossRefPubMedGoogle Scholar
  43. Goyal SK, Ghatge SV, Nema P, Tamhane SM (2006) Understanding urban vehicular pollution problem vis-a-vis ambient air quality—case study of a megacity (Delhi, India). Environ Monit Assess 119:557–569CrossRefPubMedGoogle Scholar
  44. Hamson DK, Wainwright SR, Taylor JR, Jones BA, Watson NV, Galea LaM (2013) Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. Endocrinology 154:3294–3304CrossRefPubMedGoogle Scholar
  45. Hayley S, Litteljohn D (2013) Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci 7:218CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem 75:965–972CrossRefPubMedGoogle Scholar
  47. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen, S.-EW, Lindvall O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712CrossRefPubMedGoogle Scholar
  48. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol Brain Res 57:1–9CrossRefPubMedGoogle Scholar
  49. Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res 59:921–929CrossRefPubMedGoogle Scholar
  50. Jonas RA, Yuan T-F, Liang Y-X, Jonas JB, Tay DKC, Ellis-Behnke RG (2012) The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One 7:e30763CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jongbloets BC, Lemstra S, Schellino R, Broekhoven MH, Parkash J, Hellemons AJCGM, Mao T, Giacobini P, van Praag H, De Marchis S et al (2017) Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun 8:14666CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kandlikar M, Ramachandran G (2000) The causes and consequences of particulate air pollution in urban India: a synthesis of the science. Annu Rev Energy Environ 25:629–684CrossRefGoogle Scholar
  53. Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, Johnson JA, Duke L, Kodavanti P, Surace MJ et al (2011) Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 119:1149–1155CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lim Y-H, Kim H, Kim JH, Bae S, Park HY, Hong Y-C (2012) Air pollution and symptoms of depression in elderly adults. Environ Health Perspect 120:1023–1028CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13:1385–1388CrossRefPubMedGoogle Scholar
  56. Maeda T, Kiguchi N, Kobayashi Y, Ozaki M, Kishioka S (2008) Pioglitazone attenuates tactile allodynia and thermal hyperalgesia in mice subjected to peripheral nerve injury. J Pharmacol Sci 108:341–347CrossRefPubMedGoogle Scholar
  57. McLean CP, Asnaani A, Litz BT, Hofmann SG (2011) Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res 45:1027–1035CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G, Fantozzi R (2009) PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int 55:496–504CrossRefPubMedGoogle Scholar
  59. Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702CrossRefPubMedPubMedCentralGoogle Scholar
  60. Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I et al (2009) Atmospheric composition change—global and regional air quality. Atmos Environ 43:5268–5350CrossRefGoogle Scholar
  61. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:782CrossRefGoogle Scholar
  62. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefPubMedGoogle Scholar
  63. Pan Y-W, Zou J, Wang W, Sakagami H, Garelick MG, Abel G, Kuo CT, Storm DR, Xia Z (2012) Inducible and conditional deletion of extracellular signal-regulated kinase 5 disrupts adult hippocampal neurogenesis. J Biol Chem 287:23306–23317CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pan Y-W, Wang W, Xia Z (2013a) Assessment of adult neurogenesis in mice. Curr Protoc Toxicol 12:12.20Google Scholar
  65. Pan Y-W, Storm DR, Xia Z (2013b) Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP Kinase. Neurobiol Learn Mem 105:81–92CrossRefPubMedPubMedCentralGoogle Scholar
  66. Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239CrossRefPubMedGoogle Scholar
  67. Perfilieva E, Risedal A, Nyberg J, Johansson BB, Eriksson PS (2001) Gender and strain influence on neurogenesis in dentate gyrus of young rats. J Cereb Blood Flow Metab 21:211–217CrossRefPubMedGoogle Scholar
  68. Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612CrossRefPubMedPubMedCentralGoogle Scholar
  69. Pignatelli A, Belluzzi O (2010) Neurogenesis in the adult olfactory bulb. In: Menini A (ed) The neurobiology of olfaction. CRC Press/Taylor & Francis), Boca Raton (FL) (Chap. 11).Google Scholar
  70. Pronk A, Coble J, Stewart P (2009) Occupational exposure to diesel engine exhaust: a literature review. J Expo Sci Environ Epidemiol 19:443CrossRefPubMedPubMedCentralGoogle Scholar
  71. Raghavendra V, Tanga FY, DeLeo JA (2004) Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 20:467–473CrossRefPubMedGoogle Scholar
  72. Roqué PJ, Dao K, Costa LG (2016). Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. NeuroToxicology 56, 204–214CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sato K (2015) Effects of microglia on neurogenesis. Glia 63:1394–1405CrossRefPubMedPubMedCentralGoogle Scholar
  74. Saxe MD, Battaglia F, Wang J-W, Malleret G, David DJ, Monckton JE, Garcia ADR, Sofroniew MV, Kandel ER, Santarelli L et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci 103:17501–17506CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schuitemaker A, van der Doef TF, Boellaard R, van der Flier WM, Yaqub M, Windhorst AD, Barkhof F, Jonker C, Kloet RW (2012) Microglial activation in healthy aging. Neurobiol Aging 33:1067–1072CrossRefPubMedGoogle Scholar
  76. Schweikert EM, Amort J, Wilgenbus P, Forsetrman U, teiber JF, Horke S (2012) Paraoxonases-2 and -3 are important defense enzymes against Pseudomonas aeruginosa virulence factors due to their anti-oxidative and anti-inflammatory properties. J Lipids 2012:352857CrossRefPubMedPubMedCentralGoogle Scholar
  77. Smith U (2001) Pioglitazone: mechanism of action. Int J Clin Pract Suppl 121:13–18Google Scholar
  78. Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos Environ 38:5991–6004CrossRefGoogle Scholar
  79. Takeshita Y, Ransohoff RM (2012) Inflammatory cell trafficking across the blood-brain barrier (BBB): chemokine regulation and in vitro models. Immunol Rev 248:228–239CrossRefPubMedPubMedCentralGoogle Scholar
  80. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214CrossRefPubMedGoogle Scholar
  81. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12CrossRefPubMedPubMedCentralGoogle Scholar
  82. Vallières L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492CrossRefPubMedGoogle Scholar
  83. Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F (2012) Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med 172:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L et al. (2017). The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast, 5405104Google Scholar
  85. Yuan J, Ge H, Liu W, Zhu H, Chen Y, Zhang X, Yang Y, Yin Y, Chen W, Wu W et al (2017) M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 8:19855PubMedPubMedCentralGoogle Scholar
  86. Zhang F, Wang Y-Y, Liu H, Lu Y-F, Wu Q, Liu J, Shi J-S (2012). Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid BAsed Complement Alternat Med. 937605Google Scholar
  87. Zhao S, Ma L, Chu Z, Xu H, Wu W, Liu F (2017) Regulation of microglial activation in stroke. Acta Pharmacol Sin 38:445–458CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleUSA
  2. 2.Center on Human Development and DisabilityUniversity of WashingtonSeattleUSA
  3. 3.Department of Medicine and SurgeryUniversity of ParmaParmaItaly

Personalised recommendations