Archives of Toxicology

, Volume 92, Issue 5, pp 1847–1860 | Cite as

In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: impaired lipid metabolism and intestinal dysbiosis

  • Dezhen Wang
  • Jin Yan
  • Miaomiao Teng
  • Sen Yan
  • Zhiqiang Zhou
  • Wentao ZhuEmail author
Reproductive Toxicology


In this study, we investigated the effects of in utero and lactational exposure to BDE-47 on the progression of obesity and metabolic dysfunction in a diet-induced obesity model. Pregnant ICR mice were treated via oral gavage with low doses of BDE-47 (0, 0.002, and 0.2 mg/kg body weight) from gestational day 6 to postnatal day 21. After weaning, male offspring were fed an AIN93-based normal diet (ND) or high-fat diet (HFD: 60% calories from fat) for 14 weeks. We examined body weight, liver weight, histopathology, blood biochemistry, gene expression, and serum metabolic changes. A combination of 16S rRNA gene sequencing and 1H NMR-based metabolomics was conducted to examine the effects of BDE-47 on the gut microbiome. Results showed that in utero and lactational exposure to BDE-47 caused a worsening of HFD-induced obesity, hepatic steatosis, and injury; impaired glucose homeostasis and metabolic dysfunction, and mRNA levels of genes involved in lipid metabolism were significantly altered in the BDE-47-treated HFD group. The gut microbiome were perturbed by BDE-47, causing diversity reduction, compositional alteration, and metabolic changes. These changes were more pronounced for BDE-47-treated HFD mice. All these results indicate that early life exposure to low doses of BDE-47 can promote obesity and the development of metabolic dysfunction.


BDE-47 Obesity NAFLD Gut microbiome Metabolomics 



We gratefully acknowledge the financial support from National Key Research and Development Program of China (2016YFD0200202), the National Natural Science Foundation of China (21337005); and the Young Elite Scientists Sponsorship Program by CAST.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

204_2018_2177_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1026 KB)


  1. Alonso-Magdalena P, Vieira E, Soriano S et al (2010) Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect 118(9):1243–1250. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambolet-Camoit A, Ottolenghi C, Leblanc A et al (2015) Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie 116:79–91. CrossRefPubMedGoogle Scholar
  3. Ba Q, Li M, Chen P et al (2017) Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125(3):437–446. PubMedCrossRefGoogle Scholar
  4. Bansal A, Rashid C, Xin F et al (2017) Sex- and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first- and second-generation adult mice offspring. Environ Health Perspect 125(9):097022. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baskin-Bey ES, Anan A, Isomoto H, Bronk SF, Gores GJ (2007) Constitutive androstane receptor agonist, TCPOBOP, attenuates steatohepatitis in the methionine choline-deficient diet-fed mouse. World J Gastroenterol 13(42):5635–5641CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Minicis S, Rychlicki C, Agostinelli L et al (2014) Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59(5):1738–1749. CrossRefPubMedGoogle Scholar
  7. Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dingemans MM, Ramakers GM, Gardoni F et al (2007) Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect 115(6):865–870. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dong B, Saha PK, Huang W et al (2009) Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc Natl Acad Sci USA 106(44):18831–18836. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dunnick JK, Nyska A (2009) Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Exp Toxicol Pathol 61(1):1–12. CrossRefPubMedGoogle Scholar
  11. Duval C, Teixeira-Clerc F, Leblanc AF et al (2017) Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model. Environ Health Perspect 125(3):428–436. PubMedCrossRefGoogle Scholar
  12. EPA (2007) Report on alternatives to the flame retardant DecaBDE: evaluation of toxicity, availability, affordability, and fire safety issues. A Report to the Governor and the General Assembly US-EPA, IllinoisGoogle Scholar
  13. Gao J, He J, Zhai Y, Wada T, Xie W (2009) The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 284(38):25984–25992. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gao B, Bian X, Mahbub R, Lu K (2017) Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125(2):198–206. PubMedCrossRefGoogle Scholar
  15. Gauffin Cano P, Santacruz A, Moya A, Sanz Y (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 7(7):e41079. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gervois P, Kleemann R, Pilon A et al (2004) Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-alpha activator fenofibrate. J Biol Chem 279(16):16154–16160. CrossRefPubMedGoogle Scholar
  17. Gronwald W, Klein MS, Kaspar H et al (2008) Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem 80(23):9288–9297. CrossRefPubMedGoogle Scholar
  18. Guo W, Holden A, Smith SC, Gephart R, Petreas M, Park JS (2016) PBDE levels in breast milk are decreasing in California. Chemosphere 150:505–513. CrossRefPubMedGoogle Scholar
  19. Huang S, Cui Y, Guo X et al (2015) 2,2′,4,4′-Tetrabromodiphenyl ether disrupts spermatogenesis, impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats. Reprod Toxicol 51:114–124. CrossRefPubMedGoogle Scholar
  20. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N (2008) Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 116(12):1642–1647. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Koenig CM, Lango J, Pessah IN, Berman RF (2012) Maternal transfer of BDE-47 to offspring and neurobehavioral development in C57BL/6J mice. Neurotoxicol Teratol 34(6):571–580. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kramer CK, Swaminathan B, Hanley AJ et al (2014) Each degree of glucose intolerance in pregnancy predicts distinct trajectories of beta-cell function, insulin sensitivity, and glycemia in the first 3 years postpartum. Diabetes Care 37(12):3262–3269. CrossRefPubMedGoogle Scholar
  23. Lalloyer F, Wouters K, Baron M et al (2011) Peroxisome proliferator-activated receptor-alpha gene level differently affects lipid metabolism and inflammation in apolipoprotein E2 knock-in mice. Arterioscler Thromb Vasc Biol 31(7):1573–1579. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lam YY, Ha CW, Campbell CR et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7(3):e34233. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lejonklou MH, Dunder L, Bladin E et al (2017) Effects of low-dose developmental bisphenol A exposure on metabolic parameters and gene expression in male and female Fischer 344 rat offspring. Environ Health Perspect 125(6):067018. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu S, Mauvais-Jarvis F (2010) Minireview: estrogenic protection of beta-cell failure in metabolic diseases. Endocrinology 151(3):859–864. CrossRefPubMedGoogle Scholar
  28. Meeker JD, Johnson PI, Camann D, Hauser R (2009) Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci Total Environ 407(10):3425–3429. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Million M, Maraninchi M, Henry M et al (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond) 36(6):817–825. CrossRefGoogle Scholar
  30. Mujico JR, Baccan GC, Gheorghe A, Diaz LE, Marcos A (2013) Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr 110(4):711–720. CrossRefPubMedGoogle Scholar
  31. Nadal I, Santacruz A, Marcos A et al (2012) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents (vol 33, pg 758, 2009). Int J Obes 36(10):1370. CrossRefGoogle Scholar
  32. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. CrossRefPubMedGoogle Scholar
  33. Ohashi K, Komada H, Uda S et al (2015) Glucose homeostatic law: insulin clearance predicts the progression of glucose intolerance in humans. PLoS One 10(12):e0143880. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Parry E, Zota AR, Park JS, Woodruff TJ (2018) Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs): a six-year temporal trend in Northern California pregnant women. Chemosphere 195:777–783. CrossRefPubMedGoogle Scholar
  35. Raman M, Ahmed I, Gillevet PM et al (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–875.e1–3. CrossRefPubMedGoogle Scholar
  36. Rodriguez KF, Ungewitter EK, Crespo-Mejias Y et al (2016) Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124(3):336–343. CrossRefPubMedGoogle Scholar
  37. Ruhlen RL, Howdeshell KL, Mao J et al (2008) Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the “fetal estrogenization syndrome” and obesity in CD-1 mice. Environ Health Perspect 116(3):322–328. CrossRefPubMedGoogle Scholar
  38. Sanyal AJ, Chalasani N, Kowdley KV et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18):1675–1685. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shi Y, Cheng D (2009) Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab 297(1):E10-8. CrossRefPubMedGoogle Scholar
  40. Song Q, Li J (2014) A systematic review of the human body burden of e-waste exposure in China. Environ Int 68:82–93. CrossRefPubMedGoogle Scholar
  41. Stenman LK, Burcelin R, Lahtinen S (2016) Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans - towards treatment with probiotics. Benef Microbes 7(1):11–22. CrossRefPubMedGoogle Scholar
  42. Sueyoshi T, Li L, Wang H et al (2014) Flame retardant BDE-47 effectively activates nuclear receptor CAR in human primary hepatocytes. Toxicol Sci 137(2):292–302. CrossRefPubMedGoogle Scholar
  43. Suvorov A, Takser L (2010) Global gene expression analysis in the livers of rat offspring perinatally exposed to low doses of 2,2′,4,4′-tetrabromodiphenyl ether. Environ Health Perspect 118(1):97–102. PubMedCrossRefGoogle Scholar
  44. Suvorov A, Battista MC, Takser L (2009) Perinatal exposure to low-dose 2,2′,4,4′-tetrabromodiphenyl ether affects growth in rat offspring: what is the role of IGF-1? Toxicology 260(1–3):126–131. CrossRefPubMedGoogle Scholar
  45. Ta TA, Koenig CM, Golub MS et al (2011) Bioaccumulation and behavioral effects of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in perinatally exposed mice. Neurotoxicol Teratol 33(3):393–404. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Talsness CE, Kuriyama SN, Sterner-Kock A et al (2008) In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring. Environ Health Perspect 116(3):308–314. CrossRefPubMedGoogle Scholar
  47. Togo AH, Valero R, Delerce J, Raoult D, Million M (2016) “Anaerotruncus massiliensis”, a new species identified from human stool from an obese patient after bariatric surgery. New Microbes New Infect 14:56–57. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Upadhyaya S, Banerjee G (2015) Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes 6(2):85–92. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wahlang B, Falkner KC, Gregory B et al (2013) Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 24(9):1587–1595. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wahlang B, Song M, Beier JI et al (2014) Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicol Appl Pharmacol 279(3):380–390. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Xu B, Wu M, Wang M et al (2017) Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs in human serum from Shanghai, China: a study on their presence and correlations. Environ Sci Pollut Res Int. CrossRefPubMedGoogle Scholar
  52. Yamaguchi K, Yang L, McCall S et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45(6):1366–1374. CrossRefPubMedGoogle Scholar
  53. Zhang L, Nichols RG, Correll J et al (2015) Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123(7):679–688. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dezhen Wang
    • 1
  • Jin Yan
    • 1
  • Miaomiao Teng
    • 1
  • Sen Yan
    • 1
  • Zhiqiang Zhou
    • 1
  • Wentao Zhu
    • 1
    Email author
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied ChemistryChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations