Archives of Toxicology

, Volume 92, Issue 3, pp 1151–1160 | Cite as

Nuclear transport of the human aryl hydrocarbon receptor and subsequent gene induction relies on its residue histidine 291

  • A. TkachenkoEmail author
  • M. Bermudez
  • S. Irmer-Stooff
  • D. Genkinger
  • F. Henkler-Stephani
  • G. Wolber
  • A. Luch
Molecular Toxicology


The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor involved in the metabolism of physiological substances and xenobiotics, representing an interesting target in both toxicology and pharmacology. In this study, we investigated the ligand-dependent conjunction of nuclear import of the human AHR in living cells and target gene induction. Our findings strengthen the theory that the AHR triggers a precisely defined and rapid reaction upon binding to endogenous ligands, while the xenobiotic β-naphthoflavone only induces rather unspecific and slow effects. To better illuminate the ligand-mediated responses of the human AHR, we applied site-directed mutagenesis and identified histidine 291 as key residue for AHR functionality, essential for both nuclear import and target gene induction. Contrary, replacing histidine at position 291 by alanine did not affect nucleo-cytoplasmic shuttling, showing that permanent endogenous import and ligand-induced import of the AHR into the nucleus are two independent and differently regulated processes. Combining these observations with our structural investigations using a homology model of the AHR-PAS B domain, we suggest a dual role of histidine 291: (1) a major role for shaping the ligand binding site including direct interactions with ligands and, (2) an essential role for the conformational dynamics of a PAS B loop, which most likely influences the association of the AHR with the AHR nuclear translocator through interference with their protein–protein interface.


AHR Ligand binding LBD PAS B ARNT interaction 



We thank the computing center of the Freie Universität Berlin (ZEDAT) for providing the compute cluster SOROBAN for molecular dynamics calculations.

Compliance with ethical standards

Funding sources

We acknowledge intramural funding at the German Federal Institute for Risk Assessment (BfR) Grant #1322-338.

Supplementary material

204_2017_2129_MOESM1_ESM.pdf (689 kb)
Supplementary material 1 (PDF 688 KB)


  1. Adachi J et al (2001) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276:31475–31478. CrossRefPubMedGoogle Scholar
  2. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X (2012) The aryl hydrocarbon receptor system. Drug Metabol Drug Interact 27:3–8. CrossRefPubMedGoogle Scholar
  3. Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18:207–250CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergander L, Wincent E, Rannug A, Foroozesh M, Alworth W, Rannug U (2004) Metabolic fate of the Ah receptor ligand 6-formylindolo[3,2-b]carbazole. Chem Biol Interact 149:151–164. CrossRefPubMedGoogle Scholar
  5. Bermudez M, Mortier J, Rakers C, Sydow D, Wolber G (2016) More than a look into a crystal ball: protein structure elucidation guided by molecular dynamics simulations. Drug Discov Today 21:1799–1805. CrossRefPubMedGoogle Scholar
  6. Bessede A et al (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bisson WH et al (2009) Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. J Med Chem 52:5635–5641. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bowers KJ et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC 2006 conference, proceedings of the ACM/IEEE, 11–17 Nov. 2006, pp 43–43.
  9. Chen G, Bunce NJ (2004) Interaction between halogenated aromatic compounds in the Ah receptor signal transduction pathway. Environ Toxicol 19:480–489. CrossRefPubMedGoogle Scholar
  10. Chen PH, Chang JT, Li LA, Tsai HT, Shen MY, Lin P (2013) Aryl hydrocarbon receptor is a target of 17-Allylamino-17-demethoxygeldanamycin and enhances its anticancer activity in lung adenocarcinoma cells. Mol Pharmacol 83:605–612. CrossRefPubMedGoogle Scholar
  11. Connor KT, Aylward LL (2006) Human response to dioxin: aryl hydrocarbon receptor (AhR) molecular structure, function, and dose-response data for enzyme induction indicate an impaired human AhR. J Toxicol Environ Health B Crit Rev 9:147–171. CrossRefPubMedGoogle Scholar
  12. De Abrew KN, Phadnis AS, Crawford RB, Kaminski NE, Thomas RS (2011) Regulation of Bach2 by the aryl hydrocarbon receptor as a mechanism for suppression of B-cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 252:150–158. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Esser C, Rannug A (2015) The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 67:259–279. CrossRefPubMedGoogle Scholar
  14. Fritsche E et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goryo K et al (2007) Identification of amino acid residues in the Ah receptor involved in ligand binding. Biochem Biophys Res Commun 354:396–402. CrossRefPubMedGoogle Scholar
  16. Henkler F, Stolpmann K, Luch A (2012) Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. EXS 101:107–131. PubMedGoogle Scholar
  17. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38 (27–38) CrossRefPubMedGoogle Scholar
  18. Jones PB, Galeazzi DR, Fisher JM, Whitlock JP Jr (1985) Control of cytochrome P1-450 gene expression by dioxin. Science 227:1499–1502CrossRefPubMedGoogle Scholar
  19. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. CrossRefPubMedGoogle Scholar
  20. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. CrossRefPubMedGoogle Scholar
  21. Key J, Scheuermann TH, Anderson PC, Daggett V, Gardner KH (2009) Principles of ligand binding within a completely buried cavity in HIF2alpha PAS-B. J Am Chem Soc 131:17647–17654. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125. CrossRefPubMedGoogle Scholar
  23. McGuire J, Okamoto K, Whitelaw ML, Tanaka H, Poellinger L (2001) Definition of a dioxin receptor mutant that is a constitutive activator of transcription: delineation of overlapping repression and ligand binding functions within the PAS domain. J Biol Chem 276:41841–41849. CrossRefPubMedGoogle Scholar
  24. Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today 20:686–702. CrossRefPubMedGoogle Scholar
  25. Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801–814. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ohtake F et al (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423:545–550. CrossRefPubMedGoogle Scholar
  27. Opitz CA et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. CrossRefPubMedGoogle Scholar
  28. Pandini A, Denison MS, Song Y, Soshilov AA, Bonati L (2007) Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Biochemistry 46:696–708. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Parks AJ et al (2014) In silico identification of an aryl hydrocarbon receptor antagonist with biological activity in vitro and in vivo. Mol Pharmacol 86:593–608. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Perkins A, Phillips JL, Kerkvliet NI, Tanguay RL, Perdew GH, Kolluri SK, Bisson WH (2014) A structural switch between agonist and antagonist bound conformations for a ligand-optimized model of the human aryl hydrocarbon receptor ligand binding domain. Biology (Basel) 3:645–669. Google Scholar
  31. Powell JB, Goode GD, Eltom SE (2013) The aryl hydrocarbon receptor: a target for breast cancer therapy. J Cancer Ther 4:1177–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Probst MR, Reisz-Porszasz S, Agbunag RV, Ong MS, Hankinson O (1993) Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Mol Pharmacol 44:511–518PubMedGoogle Scholar
  33. Rakers C, Bermudez M, Keller BG, Mortier J, Wolber G (2015) Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations? Wiley interdisciplinary reviews. Comput Mol Sci 5:345–359. CrossRefGoogle Scholar
  34. Seok SH et al (2017) Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc Natl Acad Sci USA 114:5431–5436. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Soshilov AA, Denison MS (2014) Ligand promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis. Mol Cell Biol 34:1707–1719. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Ann Rev Immunol 32:403–432. CrossRefGoogle Scholar
  37. Tkachenko A et al (2016) The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling. Sci Rep 6:32009. CrossRefPubMedPubMedCentralGoogle Scholar
  38. van den Bogaard EH et al (2015) Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation. J Invest Dermatol 135:1320–1328. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wincent E et al (2009) The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. J Biol Chem 284:2690–2696. CrossRefPubMedGoogle Scholar
  40. Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23–29. CrossRefPubMedGoogle Scholar
  41. Xing Y et al (2012) Identification of the Ah-receptor structural determinants for ligand preferences. Toxicol Sci 129:86–97. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical and Product SafetyGerman Federal Institute for Risk Assessment (BfR)BerlinGermany
  2. 2.Institute of PharmacyFreie Universität BerlinBerlinGermany

Personalised recommendations